File size: 16,727 Bytes
dba0f1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import streamlit as st
from groq import Groq
import requests
import pandas as pd
from datetime import datetime, timedelta
import pycountry
from fpdf import FPDF
import io
import base64
from geopy.geocoders import Nominatim
from geopy.exc import GeocoderTimedOut
import plotly.express as px
import plotly.graph_objects as go
import unicodedata
from config import GROQ_API_KEY, AIRVISUAL_API_KEY, DEFAULT_MODEL
import os
from dotenv import load_dotenv
from utils.weather_utils import get_weather, get_historical_weather, get_air_quality
from utils.pdf_utils import generate_pdf
from utils.constants import SYSTEM_PROMPTS, EXAMPLE_QUERIES, CSS_STYLE
# Load environment variables
load_dotenv()
# Get API keys from environment variables
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
AIRVISUAL_API_KEY = os.getenv("AIRVISUAL_API_KEY")
DEFAULT_MODEL = "llama3-70b-8192"
# === INIT Groq CLIENT ===
client = Groq(api_key=GROQ_API_KEY)
# === PAGE CONFIG ===
st.set_page_config(
page_title="🌱 AI Climate & Smart Farming Assistant",
page_icon="🌾",
layout="wide",
initial_sidebar_state="expanded"
)
# === CSS STYLING ===
st.markdown(CSS_STYLE, unsafe_allow_html=True)
# === HEADER ===
st.markdown("<h1 class='title'>🌾 AI Climate & Smart Farming Assistant</h1>", unsafe_allow_html=True)
st.markdown("<p class='subtitle'>Real-time AI insights + live weather data</p>", unsafe_allow_html=True)
st.markdown("---")
# === SIDEBAR ===
st.sidebar.header("🌟 Features")
page = st.sidebar.radio(
"Choose your tool:",
[
"AI Assistant Chat",
"Weather Data",
"Smart Farming CSV Analysis",
]
)
# === MULTI-TURN CHAT ===
if page == "AI Assistant Chat":
st.subheader("🧠 AI Climate & Farming Chat Assistant")
option = st.selectbox(
"Choose a use case:",
list(SYSTEM_PROMPTS.keys())
)
st.markdown(f"💡 *Example*: {EXAMPLE_QUERIES[option]}")
user_input = st.text_area("Enter your question or describe your situation:")
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if st.button("Send to AI") and user_input.strip():
with st.spinner("Thinking..."):
messages = [
{"role": "system", "content": SYSTEM_PROMPTS[option]},
]
# Append chat history for multi-turn
for chat in st.session_state.chat_history:
messages.append({"role": "user", "content": chat["user"]})
messages.append({"role": "assistant", "content": chat["ai"]})
# Add current user input
messages.append({"role": "user", "content": user_input})
response = client.chat.completions.create(
model=DEFAULT_MODEL,
messages=messages,
)
ai_response = response.choices[0].message.content
# Save chat
st.session_state.chat_history.append({"user": user_input, "ai": ai_response})
# Clear input box
st.rerun()
if st.session_state.chat_history:
st.markdown("### 🕘 Conversation History")
for chat in reversed(st.session_state.chat_history):
st.markdown(f"<div class='user-input'>You:</div><div>{chat['user']}</div>", unsafe_allow_html=True)
st.markdown(f"<div class='ai-response'>{chat['ai']}</div>", unsafe_allow_html=True)
# Add PDF download button
if st.button("Download Chat as PDF"):
pdf_bytes = generate_pdf(st.session_state.chat_history)
st.download_button(
label="Click to Download PDF",
data=pdf_bytes,
file_name="climate_advice.pdf",
mime="application/pdf"
)
if st.button("Clear Chat History"):
st.session_state.chat_history = []
st.rerun()
# === WEATHER DATA PAGE ===
elif page == "Weather Data":
st.subheader("🌍 Advanced Weather & Environmental Data")
location_method = st.radio(
"Choose location input method:",
["Enter City", "Select Country"]
)
location = None
if location_method == "Enter City":
location = st.text_input("Enter a city or location (e.g., Los Angeles, Delhi):")
elif location_method == "Select Country":
country = st.selectbox("Select a country:", [country.name for country in pycountry.countries])
city = st.text_input("Enter city name:")
location = f"{city}, {country}" if city else None
if location:
tab1, tab2, tab3 = st.tabs(["Current Weather", "Historical Data", "Air Quality"])
with tab1:
if st.button("Get Current Weather"):
with st.spinner("Fetching data..."):
weather_data = get_weather(location)
if weather_data is None:
st.error("Failed to fetch weather data for this location.")
else:
col1, col2 = st.columns(2)
with col1:
st.markdown(f"### Current Weather in {weather_data['location']}:")
st.write(f"- Description: {weather_data['description']}")
st.write(f"- Temperature: {weather_data['temperature_C']} °C")
st.write(f"- Humidity: {weather_data['humidity_%']} %")
st.write(f"- Wind Speed: {weather_data['wind_speed_m/s']} m/s")
with col2:
fig = go.Figure()
fig.add_trace(go.Indicator(
mode="gauge+number",
value=weather_data['temperature_C'],
title={'text': "Temperature (°C)"},
gauge={'axis': {'range': [-20, 40]},
'bar': {'color': "darkgreen"}}
))
st.plotly_chart(fig)
with tab2:
days = st.slider("Select number of days for historical data:", 1, 30, 7)
if st.button("Get Historical Weather"):
with st.spinner("Fetching historical data..."):
hist_data = get_historical_weather(location, days)
if hist_data is None:
st.error("Failed to fetch historical weather data.")
else:
daily = hist_data['daily']
df = pd.DataFrame({
'Date': pd.date_range(start=daily['time'][0], periods=len(daily['time'])),
'Max Temp': daily['temperature_2m_max'],
'Min Temp': daily['temperature_2m_min'],
'Precipitation': daily['precipitation_sum'],
'Wind Speed': daily['wind_speed_10m_max']
})
# Create temperature range plot
fig = go.Figure()
fig.add_trace(go.Scatter(
x=df['Date'],
y=df['Max Temp'],
name='Max Temperature',
line=dict(color='red')
))
fig.add_trace(go.Scatter(
x=df['Date'],
y=df['Min Temp'],
name='Min Temperature',
line=dict(color='blue'),
fill='tonexty'
))
fig.update_layout(
title='Temperature Range Over Time',
xaxis_title='Date',
yaxis_title='Temperature (°C)',
hovermode='x unified'
)
st.plotly_chart(fig)
# Create precipitation and wind speed plot
fig2 = go.Figure()
fig2.add_trace(go.Bar(
x=df['Date'],
y=df['Precipitation'],
name='Precipitation',
marker_color='lightblue'
))
fig2.add_trace(go.Scatter(
x=df['Date'],
y=df['Wind Speed'],
name='Wind Speed',
line=dict(color='orange'),
yaxis='y2'
))
fig2.update_layout(
title='Precipitation and Wind Speed',
xaxis_title='Date',
yaxis_title='Precipitation (mm)',
yaxis2=dict(
title='Wind Speed (m/s)',
overlaying='y',
side='right'
)
)
st.plotly_chart(fig2)
with tab3:
if st.button("Get Air Quality Data"):
with st.spinner("Fetching air quality data..."):
aq_data = get_air_quality(location, AIRVISUAL_API_KEY)
if aq_data is None:
st.error("Failed to fetch air quality data.")
else:
st.markdown(f"### Air Quality in {location}")
current = aq_data['current']
# Create air quality gauges
col1, col2, col3 = st.columns(3)
# Define parameters
params = {
'pm10': {'name': 'PM10 (μg/m³)', 'range': [0, 100]},
'pm2_5': {'name': 'PM2.5 (μg/m³)', 'range': [0, 50]},
'ozone': {'name': 'Ozone (μg/m³)', 'range': [0, 100]},
'nitrogen_dioxide': {'name': 'Nitrogen Dioxide (μg/m³)', 'range': [0, 100]},
'sulphur_dioxide': {'name': 'Sulphur Dioxide (μg/m³)', 'range': [0, 100]}
}
# Display gauges for first 3 parameters
for i, param in enumerate(['pm2_5', 'pm10', 'ozone']):
if param in current and current[param] is not None:
with [col1, col2, col3][i]:
fig = go.Figure(go.Indicator(
mode="gauge+number",
value=current[param],
title={'text': params[param]['name']},
gauge={'axis': {'range': params[param]['range']},
'bar': {'color': "darkgreen"}}
))
st.plotly_chart(fig)
# Display other pollutants
st.markdown("### Other Pollutants")
col1, col2 = st.columns(2)
with col1:
if 'nitrogen_dioxide' in current and current['nitrogen_dioxide'] is not None:
st.write(f"- Nitrogen Dioxide: {current['nitrogen_dioxide']} μg/m³")
with col2:
if 'sulphur_dioxide' in current and current['sulphur_dioxide'] is not None:
st.write(f"- Sulphur Dioxide: {current['sulphur_dioxide']} μg/m³")
# === SMART FARMING CSV ANALYSIS PAGE ===
elif page == "Smart Farming CSV Analysis":
st.subheader("🌱 AI-Powered Farming Data Analysis")
uploaded_file = st.file_uploader("Upload your farming dataset (CSV)", type=["csv"])
if uploaded_file:
try:
df = pd.read_csv(uploaded_file)
st.success("✅ Data loaded successfully!")
# Create tabs for different analyses
tab1, tab2 = st.tabs(["Data Explorer", "AI Insights"])
with tab1:
st.markdown("### Dataset Preview")
st.dataframe(df.head(5))
if st.checkbox("Show Summary Statistics"):
st.markdown("### Summary Statistics")
st.write(df.describe().transpose())
# Interactive visualizations
numeric_cols = df.select_dtypes(include=["float64", "int64"]).columns.tolist()
if numeric_cols:
col1, col2 = st.columns(2)
with col1:
x_axis = st.selectbox("X-Axis", numeric_cols)
with col2:
y_axis = st.selectbox("Y-Axis", numeric_cols)
if x_axis and y_axis:
fig = px.scatter(
df,
x=x_axis,
y=y_axis,
title=f"{y_axis} vs {x_axis}",
trendline="ols",
color_discrete_sequence=["#2E7D32"]
)
st.plotly_chart(fig)
# Correlation heatmap
if len(numeric_cols) > 1:
st.markdown("### Correlation Matrix")
corr = df[numeric_cols].corr()
fig = px.imshow(corr,
text_auto=True,
aspect="auto",
color_continuous_scale="Greens")
st.plotly_chart(fig)
with tab2:
st.markdown("### AI-Powered Farming Insights")
st.info("Ask specific questions about your farming data to get actionable insights")
analysis_prompt = st.text_area(
"What insights would you like? (Examples below):",
"Analyze this farming data and provide key insights:",
height=100
)
st.caption("Examples: 'Suggest optimal crops for this region', 'Identify yield patterns', "
"'Recommend irrigation improvements', 'Predict harvest timing'")
if st.button("Generate AI Insights", type="primary"):
with st.spinner("🧠 Analyzing with AI..."):
# Prepare data context
context = f"Dataset has {len(df)} rows and columns: {', '.join(df.columns)}\n"
context += f"First 3 rows:\n{df.head(3).to_string(index=False)}"
# Get AI analysis
messages = [
{
"role": "system",
"content": (
"You are an expert agricultural data scientist. Analyze farming datasets and provide: "
"1. Actionable insights for improving crop yield "
"2. Recommendations based on climate patterns "
"3. Resource optimization strategies "
"4. Sustainable farming practices "
"Use bullet points and specific numbers when possible."
)
},
{
"role": "user",
"content": f"{analysis_prompt}\n\n{context}"
}
]
response = client.chat.completions.create(
model=DEFAULT_MODEL,
messages=messages,
temperature=0.3
)
insights = response.choices[0].message.content
st.markdown(f"<div class='insight-box'>{insights}</div>", unsafe_allow_html=True)
except Exception as e:
st.error(f"❌ Error processing data: {str(e)}")
else:
st.info("👆 Upload a CSV file containing your farming data to get started")
# === FOOTER ===
st.markdown("---")
st.markdown(
"<small>🔋 Powered by <b>llama3-70b-8192</b> on Groq • Real-time data from Open-Meteo API</small>",
unsafe_allow_html=True
)
|