File size: 26,986 Bytes
dba0f1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b9045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dba0f1d
 
 
 
 
 
11b9045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dba0f1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b9045
dba0f1d
11b9045
dba0f1d
 
 
 
 
 
 
 
 
11b9045
dba0f1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b9045
dba0f1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b9045
dba0f1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b9045
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
import streamlit as st
from groq import Groq
import requests
import pandas as pd
from datetime import datetime, timedelta
import pycountry
from fpdf import FPDF
import io
import base64
from geopy.geocoders import Nominatim
from geopy.exc import GeocoderTimedOut
import plotly.express as px
import plotly.graph_objects as go
import unicodedata
import os
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Get API keys from environment variables
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
AIRVISUAL_API_KEY = os.getenv("AIRVISUAL_API_KEY")
DEFAULT_MODEL = "llama3-70b-8192"

# === INIT Groq CLIENT ===
client = Groq(api_key=GROQ_API_KEY)

# === PAGE CONFIG ===
st.set_page_config(
    page_title="🌱 AI Climate & Smart Farming Assistant",
    page_icon="🌾",
    layout="wide",
    initial_sidebar_state="expanded"
)

# === CSS STYLING ===
st.markdown(
    """
    <style>
    .main {
        background-color: #f9f9f9;
        color: #222;
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
    }
    .title {
        text-align: center;
        color: #2E7D32;
        font-weight: 800;
    }
    .subtitle {
        text-align: center;
        font-size: 18px;
        margin-bottom: 20px;
        color: #4CAF50;
    }
    .history-box {
        background-color: #e8f5e9;
        padding: 10px;
        margin-bottom: 10px;
        border-radius: 8px;
        border-left: 5px solid #66bb6a;
        color: #000000;
    }
    .ai-response {
        background-color: #c8e6c9;
        padding: 10px;
        margin-bottom: 15px;
        border-radius: 10px;
        white-space: pre-wrap;
        color: #000000;
    }
    .user-input {
        background-color: #dcedc8;
        padding: 8px;
        border-radius: 8px;
        font-weight: bold;
        margin-bottom: 5px;
        color: #000000;
    }
    .download-button {
        background-color: #4CAF50;
        color: white;
        padding: 10px 20px;
        border-radius: 5px;
        text-decoration: none;
        display: inline-block;
        margin: 10px 0;
    }
    .insight-box {
        background-color: #e1f5fe;
        padding: 15px;
        border-radius: 10px;
        margin: 15px 0;
        border-left: 4px solid #0288d1;
        color: #000000;
        font-weight: 500;
        line-height: 1.6;
    }
    </style>
    """,
    unsafe_allow_html=True
)

# === HEADER ===
st.markdown("<h1 class='title'>🌾 AI Climate & Smart Farming Assistant</h1>", unsafe_allow_html=True)
st.markdown("<p class='subtitle'>Real-time AI insights + live weather data</p>", unsafe_allow_html=True)
st.markdown("---")

# === SYSTEM PROMPTS ===
system_prompts = {
    "Track Pollution": (
        "You are an expert environmental scientist. "
        "Help users understand pollution levels in air, water, or soil using scientific reasoning. "
        "Provide actionable recommendations for improvement."
    ),
    "Carbon Emissions": (
        "You are a sustainability advisor. "
        "Estimate and explain carbon emissions, suggest reductions and eco-friendly alternatives. "
        "Include cost-benefit analysis and ROI calculations."
    ),
    "Predict Climate Patterns": (
        "You are a climate researcher. Predict or explain regional climate changes using current and historical data. "
        "Include statistical analysis and confidence intervals."
    ),
    "Smart Farming Advice": (
        "You are an AI-powered farming assistant. Help users with crop selection, irrigation, pest control, and yield optimization. "
        "Focus on sustainable practices and resource efficiency."
    ),
}

# === EXAMPLE QUERIES ===
example_queries = {
    "Track Pollution": "e.g., What's the air quality near Lahore right now?",
    "Carbon Emissions": "e.g., How can a factory reduce CO2 output sustainably?",
    "Predict Climate Patterns": "e.g., What climate changes are expected in sub-Saharan Africa?",
    "Smart Farming Advice": "e.g., Best crops to grow in dry conditions in Uganda?",
}

# === UTILS: API CALLS ===
def get_weather(location: str):
    try:
        # First, get coordinates for the location
        geocoding_url = f"https://geocoding-api.open-meteo.com/v1/search?name={location}&count=1"
        geo_resp = requests.get(geocoding_url, timeout=10)
        geo_resp.raise_for_status()
        geo_data = geo_resp.json()

        if not geo_data.get('results'):
            return None

        lat = geo_data['results'][0]['latitude']
        lon = geo_data['results'][0]['longitude']
        location_name = geo_data['results'][0]['name']

        # Then get weather data for those coordinates
        weather_url = f"https://api.open-meteo.com/v1/forecast?latitude={lat}&longitude={lon}&current=temperature_2m,relative_humidity_2m,wind_speed_10m,weather_code"
        weather_resp = requests.get(weather_url, timeout=10)
        weather_resp.raise_for_status()
        weather_data = weather_resp.json()

        # Weather code to description mapping
        weather_codes = {
            0: "Clear sky",
            1: "Mainly clear",
            2: "Partly cloudy",
            3: "Overcast",
            45: "Foggy",
            48: "Depositing rime fog",
            51: "Light drizzle",
            53: "Moderate drizzle",
            55: "Dense drizzle",
            61: "Slight rain",
            63: "Moderate rain",
            65: "Heavy rain",
            71: "Slight snow",
            73: "Moderate snow",
            75: "Heavy snow",
            77: "Snow grains",
            80: "Slight rain showers",
            81: "Moderate rain showers",
            82: "Violent rain showers",
            85: "Slight snow showers",
            86: "Heavy snow showers",
            95: "Thunderstorm",
            96: "Thunderstorm with slight hail",
            99: "Thunderstorm with heavy hail"
        }

        current = weather_data['current']
        weather_code = current['weather_code']
        weather_desc = weather_codes.get(weather_code, "Unknown")

        return {
            "location": location_name,
            "description": weather_desc,
            "temperature_C": current['temperature_2m'],
            "humidity_%": current['relative_humidity_2m'],
            "wind_speed_m/s": current['wind_speed_10m']
        }
    except Exception as e:
        return None

def get_historical_weather(location: str, days: int = 7):
    try:
        # Get coordinates
        geocoding_url = f"https://geocoding-api.open-meteo.com/v1/search?name={location}&count=1"
        geo_resp = requests.get(geocoding_url, timeout=10)
        geo_resp.raise_for_status()
        geo_data = geo_resp.json()

        if not geo_data.get('results'):
            return None

        lat = geo_data['results'][0]['latitude']
        lon = geo_data['results'][0]['longitude']

        # Get historical data
        end_date = datetime.now()
        start_date = end_date - timedelta(days=days)

        weather_url = (
            f"https://api.open-meteo.com/v1/forecast"
            f"?latitude={lat}&longitude={lon}"
            f"&start_date={start_date.strftime('%Y-%m-%d')}"
            f"&end_date={end_date.strftime('%Y-%m-%d')}"
            f"&daily=temperature_2m_max,temperature_2m_min,precipitation_sum,wind_speed_10m_max"
        )

        weather_resp = requests.get(weather_url, timeout=10)
        weather_resp.raise_for_status()
        return weather_resp.json()
    except Exception as e:
        return None

def get_air_quality(location: str):
    try:
        # First, get coordinates for the location
        geocoding_url = f"https://geocoding-api.open-meteo.com/v1/search?name={location}&count=1"
        geo_resp = requests.get(geocoding_url, timeout=10)
        geo_resp.raise_for_status()
        geo_data = geo_resp.json()

        if not geo_data.get('results'):
            return None

        lat = geo_data['results'][0]['latitude']
        lon = geo_data['results'][0]['longitude']

        # Try Open-Meteo API first
        aq_url = f"https://air-quality-api.open-meteo.com/v1/air-quality?latitude={lat}&longitude={lon}&current=pm10,pm2_5,ozone,nitrogen_dioxide,sulphur_dioxide"
        aq_resp = requests.get(aq_url, timeout=10)

        if aq_resp.status_code == 200:
            aq_data = aq_resp.json()
            if 'current' in aq_data:
                return aq_data

        # If Open-Meteo fails, try AirVisual API
        airvisual_url = f"http://api.airvisual.com/v2/nearest_city?lat={lat}&lon={lon}&key={AIRVISUAL_API_KEY}"
        airvisual_resp = requests.get(airvisual_url, timeout=10)

        if airvisual_resp.status_code == 200:
            airvisual_data = airvisual_resp.json()
            if 'data' in airvisual_data and 'current' in airvisual_data['data']:
                current = airvisual_data['data']['current']['pollution']
                return {
                    'current': {
                        'pm10': current.get('p1'),
                        'pm2_5': current.get('p2'),
                        'ozone': current.get('o3'),
                        'nitrogen_dioxide': None,
                        'sulphur_dioxide': None
                    }
                }

        return None
    except Exception as e:
        print(f"Air quality error: {str(e)}")
        return None

# === UTILS: PDF Generation ===
def clean_text_for_pdf(text):
    """Clean text to be PDF-safe by removing or replacing problematic characters"""
    # Normalize Unicode characters
    text = unicodedata.normalize('NFKD', text)
    # Replace common problematic characters
    replacements = {
        'μ': 'micro',
        '°': ' degrees',
        '℃': 'C',
        '±': '+/-',
        '×': 'x',
        '÷': '/',
        '≤': '<=',
        '≥': '>=',
        '≠': '!=',
        '∞': 'infinity',
        '→': '->',
        '←': '<-',
        '↑': 'up',
        '↓': 'down',
        '↔': '<->',
        '≈': '~=',
        '∑': 'sum',
        '∏': 'product',
        '√': 'sqrt',
        '∫': 'integral',
        '∆': 'delta',
        '∇': 'nabla',
        '∂': 'partial',
        '∝': 'proportional to',
        '∞': 'infinity',
        '∅': 'empty set',
        '∈': 'in',
        '∉': 'not in',
        '⊂': 'subset',
        '⊃': 'superset',
        '∪': 'union',
        '∩': 'intersection',
        '∀': 'for all',
        '∃': 'exists',
        '∄': 'does not exist',
        '∴': 'therefore',
        '∵': 'because'
    }
    for char, replacement in replacements.items():
        text = text.replace(char, replacement)
    return text

def generate_pdf(chat_history, title="AI Climate & Farming Advice"):
    pdf = FPDF()
    pdf.add_page()

    # Use built-in font
    pdf.set_font("helvetica", "B", 16)
    pdf.cell(0, 10, clean_text_for_pdf(title), ln=True, align='C')
    pdf.ln(10)

    # Chat history
    for chat in chat_history:
        # User message
        pdf.set_font("helvetica", "B", 12)
        pdf.cell(0, 10, "User:", ln=True)
        pdf.set_font("helvetica", "", 12)
        # Clean and wrap text
        user_text = clean_text_for_pdf(chat["user"])
        pdf.multi_cell(0, 10, user_text)
        pdf.ln(5)

        # AI response
        pdf.set_font("helvetica", "B", 12)
        pdf.cell(0, 10, "AI Response:", ln=True)
        pdf.set_font("helvetica", "", 12)
        # Clean and wrap text
        ai_text = clean_text_for_pdf(chat["ai"])
        pdf.multi_cell(0, 10, ai_text)
        pdf.ln(10)

    return pdf.output(dest="S").encode("latin-1", "replace")

# === UTILS: Get Country List ===
def get_country_list():
    countries = [country.name for country in pycountry.countries]
    return sorted(countries)

# === SIDEBAR ===
st.sidebar.header("🌟 Features")
page = st.sidebar.radio(
    "Choose your tool:",
    [
        "AI Assistant Chat",
        "Weather Data",
        "Smart Farming CSV Analysis",
    ]
)

# === MULTI-TURN CHAT ===
if page == "AI Assistant Chat":
    st.subheader("🧠 AI Climate & Farming Chat Assistant")
    option = st.selectbox(
        "Choose a use case:",
        list(system_prompts.keys())
    )
    st.markdown(f"💡 *Example*: {example_queries[option]}")

    user_input = st.text_area("Enter your question or describe your situation:")

    if "chat_history" not in st.session_state:
        st.session_state.chat_history = []

    if st.button("Send to AI") and user_input.strip():
        with st.spinner("Thinking..."):
            messages = [
                {"role": "system", "content": system_prompts[option]},
            ]
            # Append chat history for multi-turn
            for chat in st.session_state.chat_history:
                messages.append({"role": "user", "content": chat["user"]})
                messages.append({"role": "assistant", "content": chat["ai"]})
            # Add current user input
            messages.append({"role": "user", "content": user_input})

            response = client.chat.completions.create(
                model=DEFAULT_MODEL,
                messages=messages,
            )
            ai_response = response.choices[0].message.content

            # Save chat
            st.session_state.chat_history.append({"user": user_input, "ai": ai_response})

            # Clear input box
            st.rerun()

    if st.session_state.chat_history:
        st.markdown("### 🕘 Conversation History")
        for chat in reversed(st.session_state.chat_history):
            st.markdown(f"<div class='user-input'>You:</div><div>{chat['user']}</div>", unsafe_allow_html=True)
            st.markdown(f"<div class='ai-response'>{chat['ai']}</div>", unsafe_allow_html=True)

        # Add PDF download button
        if st.button("Download Chat as PDF"):
            pdf_bytes = generate_pdf(st.session_state.chat_history)
            st.download_button(
                label="Click to Download PDF",
                data=pdf_bytes,
                file_name="climate_advice.pdf",
                mime="application/pdf"
            )

    if st.button("Clear Chat History"):
        st.session_state.chat_history = []
        st.rerun()

# === WEATHER DATA PAGE ===
elif page == "Weather Data":
    st.subheader("🌍 Advanced Weather & Environmental Data")

    location_method = st.radio(
        "Choose location input method:",
        ["Enter City", "Select Country"]
    )

    location = None
    if location_method == "Enter City":
        location = st.text_input("Enter a city or location (e.g., Los Angeles, Delhi):")
    elif location_method == "Select Country":
        country = st.selectbox("Select a country:", get_country_list())
        city = st.text_input("Enter city name:")
        location = f"{city}, {country}" if city else None

    if location:
        tab1, tab2, tab3 = st.tabs(["Current Weather", "Historical Data", "Air Quality"])

        with tab1:
            if st.button("Get Current Weather"):
                with st.spinner("Fetching data..."):
                    weather_data = get_weather(location)
                    if weather_data is None:
                        st.error("Failed to fetch weather data for this location.")
                    else:
                        col1, col2 = st.columns(2)

                        with col1:
                            st.markdown(f"### Current Weather in {weather_data['location']}:")
                            st.write(f"- Description: {weather_data['description']}")
                            st.write(f"- Temperature: {weather_data['temperature_C']} °C")
                            st.write(f"- Humidity: {weather_data['humidity_%']} %")
                            st.write(f"- Wind Speed: {weather_data['wind_speed_m/s']} m/s")

                        with col2:
                            fig = go.Figure()
                            fig.add_trace(go.Indicator(
                                mode="gauge+number",
                                value=weather_data['temperature_C'],
                                title={'text': "Temperature (°C)"},
                                gauge={'axis': {'range': [-20, 40]},
                                       'bar': {'color': "darkgreen"}}
                            ))
                            st.plotly_chart(fig)

        with tab2:
            days = st.slider("Select number of days for historical data:", 1, 30, 7)
            if st.button("Get Historical Weather"):
                with st.spinner("Fetching historical data..."):
                    hist_data = get_historical_weather(location, days)
                    if hist_data is None:
                        st.error("Failed to fetch historical weather data.")
                    else:
                        daily = hist_data['daily']
                        df = pd.DataFrame({
                            'Date': pd.date_range(start=daily['time'][0], periods=len(daily['time'])),
                            'Max Temp': daily['temperature_2m_max'],
                            'Min Temp': daily['temperature_2m_min'],
                            'Precipitation': daily['precipitation_sum'],
                            'Wind Speed': daily['wind_speed_10m_max']
                        })

                        # Create temperature range plot
                        fig = go.Figure()
                        fig.add_trace(go.Scatter(
                            x=df['Date'],
                            y=df['Max Temp'],
                            name='Max Temperature',
                            line=dict(color='red')
                        ))
                        fig.add_trace(go.Scatter(
                            x=df['Date'],
                            y=df['Min Temp'],
                            name='Min Temperature',
                            line=dict(color='blue'),
                            fill='tonexty'
                        ))
                        fig.update_layout(
                            title='Temperature Range Over Time',
                            xaxis_title='Date',
                            yaxis_title='Temperature (°C)',
                            hovermode='x unified'
                        )
                        st.plotly_chart(fig)

                        # Create precipitation and wind speed plot
                        fig2 = go.Figure()
                        fig2.add_trace(go.Bar(
                            x=df['Date'],
                            y=df['Precipitation'],
                            name='Precipitation',
                            marker_color='lightblue'
                        ))
                        fig2.add_trace(go.Scatter(
                            x=df['Date'],
                            y=df['Wind Speed'],
                            name='Wind Speed',
                            line=dict(color='orange'),
                            yaxis='y2'
                        ))
                        fig2.update_layout(
                            title='Precipitation and Wind Speed',
                            xaxis_title='Date',
                            yaxis_title='Precipitation (mm)',
                            yaxis2=dict(
                                title='Wind Speed (m/s)',
                                overlaying='y',
                                side='right'
                            )
                        )
                        st.plotly_chart(fig2)

        with tab3:
            if st.button("Get Air Quality Data"):
                with st.spinner("Fetching air quality data..."):
                    aq_data = get_air_quality(location)
                    if aq_data is None:
                        st.error("Failed to fetch air quality data.")
                    else:
                        st.markdown(f"### Air Quality in {location}")
                        current = aq_data['current']

                        # Create air quality gauges
                        col1, col2, col3 = st.columns(3)

                        # Define parameters
                        params = {
                            'pm10': {'name': 'PM10 (μg/m³)', 'range': [0, 100]},
                            'pm2_5': {'name': 'PM2.5 (μg/m³)', 'range': [0, 50]},
                            'ozone': {'name': 'Ozone (μg/m³)', 'range': [0, 100]},
                            'nitrogen_dioxide': {'name': 'Nitrogen Dioxide (μg/m³)', 'range': [0, 100]},
                            'sulphur_dioxide': {'name': 'Sulphur Dioxide (μg/m³)', 'range': [0, 100]}
                        }

                        # Display gauges for first 3 parameters
                        for i, param in enumerate(['pm2_5', 'pm10', 'ozone']):
                            if param in current and current[param] is not None:
                                with [col1, col2, col3][i]:
                                    fig = go.Figure(go.Indicator(
                                        mode="gauge+number",
                                        value=current[param],
                                        title={'text': params[param]['name']},
                                        gauge={'axis': {'range': params[param]['range']},
                                               'bar': {'color': "darkgreen"}}
                                    ))
                                    st.plotly_chart(fig)

                        # Display other pollutants
                        st.markdown("### Other Pollutants")
                        col1, col2 = st.columns(2)
                        with col1:
                            if 'nitrogen_dioxide' in current and current['nitrogen_dioxide'] is not None:
                                st.write(f"- Nitrogen Dioxide: {current['nitrogen_dioxide']} μg/m³")
                        with col2:
                            if 'sulphur_dioxide' in current and current['sulphur_dioxide'] is not None:
                                st.write(f"- Sulphur Dioxide: {current['sulphur_dioxide']} μg/m³")

# === SMART FARMING CSV ANALYSIS PAGE ===
elif page == "Smart Farming CSV Analysis":
    st.subheader("🌱 AI-Powered Farming Data Analysis")
    uploaded_file = st.file_uploader("Upload your farming dataset (CSV)", type=["csv"])

    if uploaded_file:
        try:
            df = pd.read_csv(uploaded_file)
            st.success("✅ Data loaded successfully!")

            # Create tabs for different analyses
            tab1, tab2 = st.tabs(["Data Explorer", "AI Insights"])

            with tab1:
                st.markdown("### Dataset Preview")
                st.dataframe(df.head(5))

                if st.checkbox("Show Summary Statistics"):
                    st.markdown("### Summary Statistics")
                    st.write(df.describe().transpose())

                # Interactive visualizations
                numeric_cols = df.select_dtypes(include=["float64", "int64"]).columns.tolist()
                if numeric_cols:
                    col1, col2 = st.columns(2)
                    with col1:
                        x_axis = st.selectbox("X-Axis", numeric_cols)
                    with col2:
                        y_axis = st.selectbox("Y-Axis", numeric_cols)

                    if x_axis and y_axis:
                        fig = px.scatter(
                            df,
                            x=x_axis,
                            y=y_axis,
                            title=f"{y_axis} vs {x_axis}",
                            trendline="ols",
                            color_discrete_sequence=["#2E7D32"]
                        )
                        st.plotly_chart(fig)

                    # Correlation heatmap
                    if len(numeric_cols) > 1:
                        st.markdown("### Correlation Matrix")
                        corr = df[numeric_cols].corr()
                        fig = px.imshow(corr,
                                        text_auto=True,
                                        aspect="auto",
                                        color_continuous_scale="Greens")
                        st.plotly_chart(fig)

            with tab2:
                st.markdown("### AI-Powered Farming Insights")
                st.info("Ask specific questions about your farming data to get actionable insights")

                analysis_prompt = st.text_area(
                    "What insights would you like? (Examples below):",
                    "Analyze this farming data and provide key insights:",
                    height=100
                )

                st.caption("Examples: 'Suggest optimal crops for this region', 'Identify yield patterns', "
                           "'Recommend irrigation improvements', 'Predict harvest timing'")

                if st.button("Generate AI Insights", type="primary"):
                    with st.spinner("🧠 Analyzing with AI..."):
                        # Prepare data context
                        context = f"Dataset has {len(df)} rows and columns: {', '.join(df.columns)}\n"
                        context += f"First 3 rows:\n{df.head(3).to_string(index=False)}"

                        # Get AI analysis
                        messages = [
                            {
                                "role": "system",
                                "content": (
                                    "You are an expert agricultural data scientist. Analyze farming datasets and provide: "
                                    "1. Actionable insights for improving crop yield "
                                    "2. Recommendations based on climate patterns "
                                    "3. Resource optimization strategies "
                                    "4. Sustainable farming practices "
                                    "Use bullet points and specific numbers when possible."
                                )
                            },
                            {
                                "role": "user",
                                "content": f"{analysis_prompt}\n\n{context}"
                            }
                        ]

                        response = client.chat.completions.create(
                            model=DEFAULT_MODEL,
                            messages=messages,
                            temperature=0.3
                        )
                        insights = response.choices[0].message.content
                        st.markdown(f"<div class='insight-box'>{insights}</div>", unsafe_allow_html=True)

        except Exception as e:
            st.error(f"❌ Error processing data: {str(e)}")
    else:
        st.info("👆 Upload a CSV file containing your farming data to get started")

# === FOOTER ===
st.markdown("---")
st.markdown(
    "<small>🔋 Powered by <b>llama3-70b-8192</b> on Groq • Real-time data from Open-Meteo API</small>",
    unsafe_allow_html=True
)