File size: 13,956 Bytes
23e009d
 
 
 
 
b36d2b4
 
 
23e009d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import difflib
import streamlit as st
from groq import Groq
import os

# --- Set page config FIRST! ---
st.set_page_config(page_title="AI Code Assistant", layout="wide")

# --- Custom CSS for Professional Look ---
st.markdown("""
    <style>
    @import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap');
    html, body, [class*="css"]  {
        font-family: 'Inter', sans-serif;
        background-color: #f7f9fb;
    }
    .stApp {
        background-color: #f7f9fb;
    }
    .stSidebar {
        background-color: #22304a !important;
    }
    .stButton>button {
        background-color: #22304a;
        color: #fff;
        border-radius: 6px;
        border: none;
        font-weight: 600;
        padding: 0.5rem 1.5rem;
        margin-top: 0.5rem;
        margin-bottom: 0.5rem;
        transition: background 0.2s;
    }
    .stButton>button:hover {
        background-color: #1a2333;
        color: #fff;
    }
    .stTextInput>div>div>input, .stTextArea>div>textarea {
        background: #fff;
        border: 1px solid #d1d5db;
        border-radius: 6px;
        color: #22304a;
        font-size: 1rem;
    }
    .stDownloadButton>button {
        background-color: #22304a;
        color: #fff;
        border-radius: 6px;
        border: none;
        font-weight: 600;
        padding: 0.5rem 1.5rem;
        margin-top: 0.5rem;
        margin-bottom: 0.5rem;
        transition: background 0.2s;
    }
    .stDownloadButton>button:hover {
        background-color: #1a2333;
        color: #fff;
    }
    .stExpanderHeader {
        font-weight: 600;
        color: #22304a;
        font-size: 1.1rem;
    }
    .stMarkdown {
        color: #22304a;
    }
    .stAlert {
        border-radius: 6px;
    }
    </style>
""", unsafe_allow_html=True)

# --- Groq API Setup ---
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
if not GROQ_API_KEY:
    st.error("GROQ_API_KEY environment variable not set. Please set it in your Hugging Face Space secrets.")
    st.stop()
client = Groq(api_key=GROQ_API_KEY)

def groq_api_call(prompt):
    chat_completion = client.chat.completions.create(
        messages=[{"role": "user", "content": prompt}],
        model="llama3-70b-8192",
    )
    return chat_completion.choices[0].message.content

def get_diff_html(original, modified):
    original_lines = original.splitlines()
    modified_lines = modified.splitlines()
    differ = difflib.HtmlDiff(tabsize=4, wrapcolumn=80)
    return differ.make_table(original_lines, modified_lines, "Original", "Modified", context=True, numlines=2)

def code_complexity(code):
    lines = code.count('\n') + 1
    functions = code.count('def ')
    classes = code.count('class ')
    comments = code.count('#')
    return f"Lines: {lines}, Functions: {functions}, Classes: {classes}, Comments: {comments}"

def detect_code_type(code, programming_language):
    backend_keywords = [
        'flask', 'django', 'express', 'fastapi', 'spring', 'controller', 'api', 'server', 'database', 'sql', 'mongoose'
    ]
    frontend_keywords = [
        'react', 'vue', 'angular', 'component', 'html', 'css', 'document.getelementbyid', 'window.', 'render', 'jsx',
        '<html', '<body', '<script', '<div', 'getelementbyid', 'queryselector', 'addeventlistener', 'innerhtml'
    ]
    data_science_keywords = [
        'pandas', 'numpy', 'sklearn', 'matplotlib', 'seaborn', 'plt', 'train_test_split', 'randomforestclassifier', 'classification_report'
    ]
    code_lower = code.lower()
    if any(word in code_lower for word in data_science_keywords):
        return 'data_science'
    if any(word in code_lower for word in frontend_keywords):
        return 'frontend'
    if programming_language.lower() in ['python', 'java', 'c#']:
        if any(word in code_lower for word in backend_keywords):
            return 'backend'
    if programming_language.lower() in ['javascript', 'typescript', 'java', 'c#']:
        if any(word in code_lower for word in frontend_keywords):
            return 'frontend'
    if programming_language.lower() in ['python', 'java', 'c#']:
        return 'backend'
    if programming_language.lower() in ['javascript', 'typescript']:
        return 'frontend'
    return 'unknown'

def code_matches_language(code: str, language: str) -> bool:
    code = code.strip().lower()
    if language.lower() == "python":
        return "def " in code or "import " in code or ".py" in code
    if language.lower() == "c++":
        return "#include" in code or "int main" in code or ".cpp" in code or "std::" in code
    if language.lower() == "java":
        return "public class" in code or "public static void main" in code or ".java" in code
    if language.lower() == "c#":
        return "using system" in code or "namespace" in code or ".cs" in code
    if language.lower() == "javascript":
        return "function " in code or "const " in code or "let " in code or "var " in code or ".js" in code
    if language.lower() == "typescript":
        return "function " in code or "const " in code or "let " in code or "var " in code or ": string" in code or ".ts" in code
    if language.lower() == "html":
        return "<html" in code or "<!doctype html" in code
    return True  # fallback

def agentic_workflow(code, skill_level, programming_language, explanation_language, user_role):
    timeline = []
    suggestions = []

    explain_prompt = (
        f"Explain the following {programming_language} code line by line or function by function "
        f"for a {skill_level.lower()} {user_role} in {explanation_language}:\n{code}"
    )
    explanation = groq_api_call(explain_prompt)
    timeline.append({
        "step": "Explain",
        "description": "Step-by-step explanation of your code.",
        "output": explanation,
        "code": code
    })
    suggestions.append("Refactor your code for better readability and performance.")

    refactor_prompt = (
        f"Refactor the following {programming_language} code for better readability, performance, and structure. "
        f"Explain what changes you made and why, for a {skill_level.lower()} {user_role} in {explanation_language}:\n{code}"
    )
    refactor_response = groq_api_call(refactor_prompt)
    if "```" in refactor_response:
        parts = refactor_response.split("```")
        refactor_explanation = parts[0].strip()
        refactored_code = ""
        for i in range(1, len(parts)):
            if parts[i].strip().startswith(programming_language.lower()):
                refactored_code = parts[i].strip().split('\n', 1)[1] if '\n' in parts[i] else ""
                break
            elif i == 1:
                refactored_code = parts[i].strip().split('\n', 1)[1] if '\n' in parts[i] else ""
        if not refactored_code:
            refactored_code = refactor_response.strip()
    else:
        refactor_explanation = "Refactored code below."
        refactored_code = refactor_response.strip()
    timeline.append({
        "step": "Refactor",
        "description": refactor_explanation,
        "output": refactored_code,
        "code": refactored_code
    })
    suggestions.append("Review the refactored code for best practices and improvements.")

    review_prompt = (
        f"Provide a code review for the following {programming_language} code. "
        f"Include feedback on best practices, code smells, optimization, and security issues, for a {skill_level.lower()} {user_role} in {explanation_language}:\n{refactored_code}"
    )
    review_feedback = groq_api_call(review_prompt)
    timeline.append({
        "step": "Review",
        "description": "AI code review and feedback.",
        "output": review_feedback,
        "code": refactored_code
    })
    suggestions.append("Generate unit tests for your code.")

    test_prompt = (
        f"Write unit tests for the following {programming_language} code. "
        f"Use pytest style and cover all functions. For a {skill_level.lower()} {user_role} in {explanation_language}:\n{refactored_code}"
    )
    test_code = groq_api_call(test_prompt)
    timeline.append({
        "step": "Test Generation",
        "description": "AI-generated unit tests for your code.",
        "output": test_code,
        "code": test_code
    })
    suggestions.append("Run the generated tests in your local environment.")

    return timeline, suggestions

st.markdown(
    "<h2 style='text-align: center; color: #22304a; font-weight: 600; margin-bottom: 0.5em;'>AI Code Assistant</h2>",
    unsafe_allow_html=True
)

with st.sidebar:
    st.title("Settings")
    programming_language = st.selectbox(
        "Programming Language",
        ["Python", "C++", "Java", "C#", "JavaScript", "TypeScript", "HTML"]
    )
    explanation_language = st.selectbox(
        "Explanation Language",
        ["English", "Urdu", "Chinese", "Spanish"]
    )
    skill_level = st.selectbox("Skill Level", ["Beginner", "Intermediate", "Expert"])
    user_role = st.selectbox(
        "Choose Role",
        ["Data Scientist", "Backend Developer", "Frontend Developer", "Student"]
    )
    st.markdown("---")
    st.markdown("<span style='color:#fff;'>Powered by <b>BLACKBOX.AI</b></span>", unsafe_allow_html=True)

if "code" not in st.session_state:
    st.session_state.code = ""
if "timeline" not in st.session_state:
    st.session_state.timeline = []
if "suggestions" not in st.session_state:
    st.session_state.suggestions = []

col1, col2 = st.columns([2, 3], gap="large")

with col1:
    st.subheader(f"{programming_language} Code")
    uploaded_file = st.file_uploader(f"Upload .{programming_language.lower()} file", type=[programming_language.lower()])
    code_input = st.text_area(
        "Paste or edit your code here:",
        height=300,
        value=st.session_state.code,
        key="main_code_input"
    )
    if uploaded_file is not None:
        code = uploaded_file.read().decode("utf-8")
        st.session_state.code = code
        st.success("File uploaded successfully.")
    elif code_input:
        st.session_state.code = code_input

    st.markdown(f"<b>Complexity:</b> {code_complexity(st.session_state.code)}", unsafe_allow_html=True)

    st.markdown("---")
    st.markdown("#### Agent Suggestions")
    for suggestion in st.session_state.suggestions[-3:]:
        st.markdown(f"- {suggestion}")

    st.markdown("---")
    st.markdown("#### Download Full Report")
    if st.session_state.timeline:
        report = ""
        for step in st.session_state.timeline:
            report += f"## {step['step']}\n{step['description']}\n\n{step['output']}\n\n"
        st.download_button("Download Report", report, file_name="ai_code_assistant_report.txt")

with col2:
    st.subheader("Agentic Workflow")
    if st.button("Run Full AI Agent Workflow"):
        if not st.session_state.code.strip():
            st.warning("Please enter or upload code first.")
        else:
            # Language check
            if not code_matches_language(st.session_state.code, programming_language):
                st.error(f"It looks like you provided code in a different language. Please provide {programming_language} code.")
            else:
                code_type = detect_code_type(st.session_state.code, programming_language)
                # Role/code type enforcement
                if code_type == "data_science" and user_role != "Data Scientist":
                    st.error("It looks like you provided data science code. Please select 'Data Scientist' as your role.")
                elif code_type == "frontend" and user_role != "Frontend Developer":
                    st.error("It looks like you provided frontend code. Please select 'Frontend Developer' as your role.")
                elif code_type == "backend" and user_role != "Backend Developer":
                    st.error("It looks like you provided backend code. Please select 'Backend Developer' as your role.")
                elif code_type == "unknown":
                    st.warning("Could not determine the code type. Please make sure your code is complete and clear.")
                else:
                    with st.spinner("AI Agent is working through all steps..."):
                        timeline, suggestions = agentic_workflow(
                            st.session_state.code,
                            skill_level,
                            programming_language,
                            explanation_language,
                            user_role
                        )
                        st.session_state.timeline = timeline
                        st.session_state.suggestions = suggestions
                    st.success("Agentic workflow complete. See timeline below.")

    if st.session_state.timeline:
        for i, step in enumerate(st.session_state.timeline):
            with st.expander(f"Step {i+1}: {step['step']}"):
                st.markdown(f"<b>{step['description']}</b>", unsafe_allow_html=True)
                if step['step'] in ["Refactor", "Test Generation"]:
                    if i > 0:
                        prev_code = st.session_state.timeline[i-1]['code']
                        diff_html = get_diff_html(prev_code, step['code'])
                        st.markdown("**Side-by-Side Diff:**")
                        st.components.v1.html(diff_html, height=400, scrolling=True)
                if step['step'] in ["Refactor", "Test Generation"]:
                    st.markdown("**Code Output:**")
                    st.code(step['output'], language=programming_language.lower())
                else:
                    st.markdown("**Output:**")
                    st.write(step['output'])
    else:
        st.info("Run the agentic workflow to see step-by-step results, explanations, and code evolution.")

st.markdown("---")
st.markdown('<div style="text-align: center; color: #22304a; font-size: 1rem; margin-top: 2em;">Powered by <b>BLACKBOX.AI</b></div>', unsafe_allow_html=True)