Spaces:
Running
Running
File size: 14,867 Bytes
8b44e94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import streamlit as st
import difflib
import os
import re
import hashlib
from groq import Groq
# --- Page config ---
st.set_page_config(page_title="π AI Assistant with Workflow + Semantic Search", layout="wide")
# --- Groq API Setup ---
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
if not GROQ_API_KEY:
st.error("β Please set your GROQ_API_KEY environment variable.")
st.stop()
client = Groq(api_key=GROQ_API_KEY)
# --- Cache for embeddings ---
embedding_cache = {}
def get_embedding(text):
key = hashlib.sha256(text.encode()).hexdigest()
if key in embedding_cache:
return embedding_cache[key]
embedding = [ord(c) % 100 / 100 for c in text[:512]]
embedding_cache[key] = embedding
return embedding
def cosine_similarity(vec1, vec2):
dot = sum(a*b for a,b in zip(vec1, vec2))
norm1 = sum(a*a for a in vec1) ** 0.5
norm2 = sum(b*b for b in vec2) ** 0.5
return dot / (norm1 * norm2 + 1e-8)
def split_code_into_chunks(code, lang):
if lang.lower() == "python":
pattern = r'(def\s+\w+\(.*?\):|class\s+\w+\(?.*?\)?:)'
splits = re.split(pattern, code)
chunks = []
for i in range(1, len(splits), 2):
header = splits[i]
body = splits[i+1] if (i+1) < len(splits) else ""
chunks.append(header + body)
return chunks if chunks else [code]
else:
return [code]
def groq_call(prompt):
resp = client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="llama3-70b-8192",
)
return resp.choices[0].message.content
def semantic_search_improved(code, question, lang, skill, role, explain_lang):
chunks = split_code_into_chunks(code, lang)
question_emb = get_embedding(question)
scored_chunks = []
for chunk in chunks:
emb = get_embedding(chunk)
score = cosine_similarity(question_emb, emb)
scored_chunks.append((score, chunk))
scored_chunks.sort(key=lambda x: x[0], reverse=True)
top_chunks = [c for _, c in scored_chunks[:3]]
combined_code = "\n\n".join(top_chunks)
prompt = (
f"You are a friendly and insightful {lang} expert helping a {skill} {role}.\n"
f"Based on these relevant code snippets:\n{combined_code}\n"
f"Answer this question in {explain_lang}:\n{question}\n"
f"Explain which parts handle the question and how to modify them if needed."
)
return groq_call(prompt)
def error_detection_and_fixes(refactored_code, lang, skill, role, explain_lang):
prompt = (
f"You are a senior {lang} developer. Analyze this code for bugs, security flaws, "
f"and performance issues. Suggest fixes with explanations in {explain_lang}:\n\n{refactored_code}"
)
return groq_call(prompt)
def agentic_workflow(code, skill_level, programming_language, explanation_language, user_role):
timeline = []
suggestions = []
# Explanation
explain_prompt = (
f"You are a friendly and insightful {programming_language} expert helping a {skill_level} {user_role}. "
f"Explain this code in {explanation_language} with clear examples, analogies, and why each part matters:\n\n{code}"
)
explanation = groq_call(explain_prompt)
timeline.append({"step": "Explain", "description": "Detailed explanation", "output": explanation, "code": code})
suggestions.append("Consider refactoring your code to improve readability and performance.")
# Refactor
refactor_prompt = (
f"Refactor this {programming_language} code. Explain the changes like a mentor helping a {skill_level} {user_role}. "
f"Include best practices and improvements:\n\n{code}"
)
refactor_response = groq_call(refactor_prompt)
if "```" in refactor_response:
parts = refactor_response.split("```")
refactored_code = ""
for part in parts:
if part.strip().startswith(programming_language.lower()):
refactored_code = part.strip().split('\n', 1)[1] if '\n' in part else ""
break
if not refactored_code:
refactored_code = refactor_response
else:
refactored_code = refactor_response
timeline.append({"step": "Refactor", "description": "Refactored code with improvements", "output": refactored_code, "code": refactored_code})
suggestions.append("Review the refactored code and adapt it to your style or project needs.")
# Review
review_prompt = (
f"As a senior {programming_language} developer, review the refactored code. "
f"Give constructive feedback on strengths, weaknesses, performance, security, and improvements in {explanation_language}:\n\n{refactored_code}"
)
review = groq_call(review_prompt)
timeline.append({"step": "Review", "description": "Code review and suggestions", "output": review, "code": refactored_code})
suggestions.append("Incorporate review feedback for cleaner, robust code.")
# Error detection & fixes
errors = error_detection_and_fixes(refactored_code, programming_language, skill_level, user_role, explanation_language)
timeline.append({"step": "Error Detection", "description": "Bugs, security, performance suggestions", "output": errors, "code": refactored_code})
suggestions.append("Apply fixes to improve code safety and performance.")
# Test generation
test_prompt = (
f"Write clear, effective unit tests for this {programming_language} code. "
f"Explain what each test does in {explanation_language}, for a {skill_level} {user_role}:\n\n{refactored_code}"
)
tests = groq_call(test_prompt)
timeline.append({"step": "Test Generation", "description": "Generated unit tests", "output": tests, "code": tests})
suggestions.append("Run generated tests locally to validate changes.")
return timeline, suggestions
def get_inline_diff_html(original, modified):
differ = difflib.HtmlDiff(tabsize=4, wrapcolumn=80)
html = differ.make_table(
original.splitlines(), modified.splitlines(),
"Original", "Refactored", context=True, numlines=2
)
return f'<div style="overflow-x:auto; max-height:400px;">{html}</div>'
def detect_code_type(code, programming_language):
backend_keywords = [
'flask', 'django', 'express', 'fastapi', 'spring', 'controller', 'api', 'server', 'database', 'sql', 'mongoose'
]
frontend_keywords = [
'react', 'vue', 'angular', 'component', 'html', 'css', 'document.getelementbyid', 'window.', 'render', 'jsx',
'<html', '<body', '<script', '<div', 'getelementbyid', 'queryselector', 'addeventlistener', 'innerhtml'
]
data_science_keywords = [
'pandas', 'numpy', 'sklearn', 'matplotlib', 'seaborn', 'plt', 'train_test_split', 'randomforestclassifier', 'classification_report'
]
code_lower = code.lower()
if any(word in code_lower for word in data_science_keywords):
return 'data_science'
if any(word in code_lower for word in frontend_keywords):
return 'frontend'
if programming_language.lower() in ['python', 'java', 'c#']:
if any(word in code_lower for word in backend_keywords):
return 'backend'
if programming_language.lower() in ['javascript', 'typescript', 'java', 'c#']:
if any(word in code_lower for word in frontend_keywords):
return 'frontend'
if programming_language.lower() in ['python', 'java', 'c#']:
return 'backend'
if programming_language.lower() in ['javascript', 'typescript']:
return 'frontend'
return 'unknown'
def code_complexity(code):
lines = code.count('\n') + 1
functions = code.count('def ')
classes = code.count('class ')
comments = code.count('#')
return f"Lines: {lines}, Functions: {functions}, Classes: {classes}, Comments: {comments}"
def code_matches_language(code: str, language: str) -> bool:
"""Strictly check whether code matches key patterns of the selected language."""
code_lower = code.strip().lower()
language = language.lower()
patterns = {
"python": [
"def ", "class ", "import ", "from ", "try:", "except", "raise", "lambda",
"with ", "yield", "async ", "await", "print(", "self.", "__init__", "__name__",
"if __name__ == '__main__':", "#!", # shebang for executable scripts
],
"c++": [
"#include", "int main(", "std::", "::", "cout <<", "cin >>", "new ", "delete ",
"try {", "catch(", "template<", "using namespace", "class ", "struct ", "#define",
],
"java": [
"package ", "import java.", "public class", "private ", "protected ", "public static void main",
"System.out.println", "try {", "catch(", "throw new ", "implements ", "extends ",
"@Override", "interface ", "enum ", "synchronized ", "final ",
],
"c#": [
"using System", "namespace ", "class ", "interface ", "public static void Main",
"Console.WriteLine", "try {", "catch(", "throw ", "async ", "await ", "get;", "set;",
"List<", "Dictionary<", "[Serializable]", "[Obsolete]",
],
"javascript": [
"function ", "const ", "let ", "var ", "document.", "window.", "console.log",
"if(", "for(", "while(", "switch(", "try {", "catch(", "export ", "import ", "async ",
"await ", "=>", "this.", "class ", "prototype", "new ", "$(",
],
"typescript": [
"function ", "const ", "let ", "interface ", "type ", ": string", ": number", ": boolean",
"implements ", "extends ", "enum ", "public ", "private ", "protected ", "readonly ",
"import ", "export ", "console.log", "async ", "await ", "=>", "this.",
],
"html": [
"<!doctype html", "<html", "<head>", "<body>", "<script", "<style", "<meta ", "<link ",
"<title>", "<div", "<span", "<p>", "<h1>", "<ul>", "<li>", "<form", "<input", "<button",
"<table", "<footer", "<header", "<section", "<article", "<nav", "<img", "<a ", "</html>",
],
}
match_patterns = patterns.get(language, [])
match_count = sum(1 for pattern in match_patterns if pattern in code_lower)
# Require at least one pattern to match for validation to succeed
return match_count >= 1
# --- Sidebar ---
st.sidebar.title("π§ Configuration")
lang = st.sidebar.selectbox("Programming Language", ["Python", "JavaScript", "C++", "Java", "C#", "TypeScript"])
skill = st.sidebar.selectbox("Skill Level", ["Beginner", "Intermediate", "Expert"])
role = st.sidebar.selectbox("Your Role", ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"])
explain_lang = st.sidebar.selectbox("Explanation Language", ["English", "Spanish", "Chinese", "Urdu"])
st.sidebar.markdown("---")
st.sidebar.markdown("<span style='color:#fff;'>Powered by <b>BLACKBOX.AI</b></span>", unsafe_allow_html=True)
tabs = st.tabs(["π§ Full AI Workflow", "π Semantic Search"])
# --- Tab 1: Full AI Workflow ---
with tabs[0]:
st.title("π§ Full AI Workflow")
file_types = {
"Python": ["py"],
"JavaScript": ["js"],
"C++": ["cpp", "h", "hpp"],
"Java": ["java"],
"C#": ["cs"],
"TypeScript": ["ts"],
}
uploaded_file = st.file_uploader(
f"Upload {', '.join(file_types.get(lang, []))} file(s)",
type=file_types.get(lang, None)
)
if uploaded_file:
code_input = uploaded_file.read().decode("utf-8")
else:
code_input = st.text_area("Your Code", height=300, placeholder="Paste your code here...")
if code_input:
st.markdown(f"<b>Complexity:</b> {code_complexity(code_input)}", unsafe_allow_html=True)
if st.button("Run AI Workflow"):
if not code_input.strip():
st.warning("Please paste or upload your code.")
elif not code_matches_language(code_input, lang):
st.error(f"The pasted code doesnβt look like valid {lang} code. Please check your code or select the correct language.")
else:
code_type = detect_code_type(code_input, lang)
if code_type == "data_science" and role != "Data Scientist":
st.error("Data science code detected. Please select 'Data Scientist' role.")
elif code_type == "frontend" and role != "Frontend Developer":
st.error("Frontend code detected. Please select 'Frontend Developer' role.")
elif code_type == "backend" and role != "Backend Developer":
st.error("Backend code detected. Please select 'Backend Developer' role.")
else:
with st.spinner("Running agentic workflow..."):
timeline, suggestions = agentic_workflow(code_input, skill, lang, explain_lang, role)
# Show each step in an expander
for step in timeline:
with st.expander(f"β
{step['step']} - {step['description']}"):
if step['step'] == "Refactor":
diff_html = get_inline_diff_html(code_input, step['code'])
st.markdown(diff_html, unsafe_allow_html=True)
st.code(step['output'], language=lang.lower())
else:
st.markdown(step['output'])
st.markdown("#### Agent Suggestions")
for s in suggestions:
st.markdown(f"- {s}")
# Download buttons after suggestions
st.markdown("---")
st.markdown("### π₯ Download Results")
report_text = ""
for step in timeline:
report_text += f"## {step['step']}\n{step['description']}\n\n{step['output']}\n\n"
st.download_button(
label="π Download Full Workflow Report",
data=report_text,
file_name="ai_workflow_report.txt",
mime="text/plain",
)
# --- Tab 2: Semantic Search ---
with tabs[1]:
st.title("π Semantic Search")
sem_code = st.text_area("Your Code", height=300, placeholder="Paste your code...")
sem_q = st.text_input("Your Question", placeholder="E.g., What does this function do?")
if st.button("Run Semantic Search"):
if not sem_code.strip() or not sem_q.strip():
st.warning("Code and question required.")
else:
with st.spinner("Running semantic search..."):
answer = semantic_search_improved(sem_code, sem_q, lang, skill, role, explain_lang)
st.markdown("### π Answer")
st.markdown(answer)
st.markdown("---")
|