Naz786's picture
Update app.py
5dca394 verified
raw
history blame
11.6 kB
import streamlit as st
import difflib
import requests
import datetime
# --- CONFIG ---
GROQ_API_KEY = st.secrets.get('GROQ_API_KEY', 'YOUR_GROQ_API_KEY')
BLACKBOX_API_KEY = st.secrets.get('BLACKBOX_API_KEY', 'YOUR_BLACKBOX_API_KEY')
PROGRAMMING_LANGUAGES = ["Python", "JavaScript", "TypeScript", "Java", "C++", "C#"]
SKILL_LEVELS = ["Beginner", "Intermediate", "Expert"]
USER_ROLES = ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"]
EXPLANATION_LANGUAGES = ["English", "Spanish", "Chinese", "Urdu"]
EXAMPLE_QUESTIONS = [
"What does this function do?",
"How can I optimize this code?",
"What are the potential bugs in this code?",
"How does this algorithm work?",
"What design patterns are used here?",
"How can I make this code more readable?"
]
# --- API CALLS ---
def call_groq_api(prompt, model="llama3-70b-8192"):
headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"}
data = {"model": model, "messages": [{"role": "user", "content": prompt}]}
response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=data, headers=headers)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
else:
return f"[Groq API Error] {response.text}"
def call_blackbox_agent(messages, model="gpt-4o"):
"""
messages: list of dicts, e.g.
[
{"role": "system", "content": "You are a helpful coding assistant."},
{"role": "user", "content": "Refactor this code: ..."}
]
"""
url = "https://api.blackbox.ai/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {BLACKBOX_API_KEY}"
}
data = {
"model": model,
"messages": messages
}
response = requests.post(url, headers=headers, json=data)
if response.status_code == 200:
return response.json()["choices"][0]["message"]["content"]
else:
return call_groq_api(messages[-1]["content"])
# --- UTILS ---
def code_matches_language(code, language):
if language.lower() in code.lower():
return True
return True
def calculate_code_complexity(code):
lines = code.count('\n') + 1
return f"{lines} lines"
def get_inline_diff(original, modified):
diff = difflib.unified_diff(
original.splitlines(),
modified.splitlines(),
lineterm='',
fromfile='Original',
tofile='Refactored'
)
return '\n'.join(diff)
# --- STREAMLIT APP ---
st.set_page_config(page_title="Code Workflows", layout="wide")
st.title("CodeGenie")
# Navigation
page = st.sidebar.radio("Navigate", ["Home", "Code Workflow", "Semantic Search"])
if page == "Home":
st.header("Welcome to the Code Genie!")
st.markdown("""
- **Full Code Workflow:** Complete code analysis pipeline with explanation, refactoring, review, and testing (powered by Groq/Blackbox)
- **Semantic Search:** Ask natural language questions about your code and get intelligent answers
""")
st.info("Select a feature from the sidebar to get started.")
elif page == "Code Workflow":
st.header("Full Code Workflow")
code_input = st.text_area("Paste your code here", height=200)
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"])
if uploaded_file:
code_input = uploaded_file.read().decode("utf-8")
st.text_area("File content", code_input, height=200, key="file_content")
col1, col2, col3, col4 = st.columns(4)
with col1:
programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES)
with col2:
skill_level = st.selectbox("Skill Level", SKILL_LEVELS)
with col3:
user_role = st.selectbox("Your Role", USER_ROLES)
with col4:
explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES)
if code_input:
st.caption(f"Complexity: {calculate_code_complexity(code_input)}")
if st.button("Run Workflow", type="primary"):
if not code_input.strip():
st.error("Please paste or upload your code.")
elif not code_matches_language(code_input, programming_language):
st.error(f"Language mismatch. Please check your code and language selection.")
else:
with st.spinner("Running Code Workflow..."):
steps = [
("Explain", call_groq_api(f"Explain this {programming_language} code for a {skill_level} {user_role} in {explanation_language}:\n{code_input}")),
("Refactor", call_blackbox_agent([
{"role": "system", "content": "You are a helpful coding assistant."},
{"role": "user", "content": f"Refactor this {programming_language} code: {code_input}"}
])),
("Review", call_groq_api(f"Review this {programming_language} code for errors and improvements: {code_input}")),
("ErrorDetection", call_groq_api(f"Find bugs in this {programming_language} code: {code_input}")),
("TestGeneration", call_groq_api(f"Generate tests for this {programming_language} code: {code_input}")),
]
timeline = []
for step, output in steps:
timeline.append({"step": step, "output": output})
st.success("Workflow complete!")
for t in timeline:
st.subheader(t["step"])
st.write(t["output"])
# Show code diff (Original vs Refactored)
st.subheader("Code Diff (Original vs Refactored)")
refactored_code = steps[1][1] # Blackbox agent output
st.code(get_inline_diff(code_input, refactored_code), language=programming_language.lower())
# Download report
report = f"Code Workflow Report\nGenerated on: {datetime.datetime.now()}\nLanguage: {programming_language}\nSkill Level: {skill_level}\nRole: {user_role}\n\n"
for t in timeline:
report += f"## {t['step']}\n{t['output']}\n\n---\n\n"
st.download_button("Download Report", report, file_name="ai_workflow_report.txt")
elif page == "Semantic Search":
st.header("Semantic Search")
code_input = st.text_area("Paste your code here", height=200, key="sem_code")
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="sem_file")
if uploaded_file:
code_input = uploaded_file.read().decode("utf-8")
st.text_area("File content", code_input, height=200, key="sem_file_content")
col1, col2, col3, col4 = st.columns(4)
with col1:
programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="sem_lang")
with col2:
skill_level = st.selectbox("Skill Level", SKILL_LEVELS, key="sem_skill")
with col3:
user_role = st.selectbox("Your Role", USER_ROLES, key="sem_role")
with col4:
explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES, key="sem_expl")
# Initialize session state variables for voice input and auto run
if "voice_question" not in st.session_state:
st.session_state.voice_question = ""
if "auto_run_search" not in st.session_state:
st.session_state.auto_run_search = False
# Container for question input and voice button
col_question, col_voice = st.columns([8,1])
with col_question:
question = st.text_input("Ask a question about your code", value=st.session_state.voice_question, key="question_input")
with col_voice:
# Microphone button with custom HTML and JS for voice input
st.markdown(
"""
<button id="mic-btn" title="Click to speak" style="height:38px; width:38px; font-size:20px;">🎀</button>
<script>
const micBtn = window.parent.document.querySelector('#mic-btn');
const streamlitDoc = window.parent.document;
// Use Web Speech API for voice recognition
const SpeechRecognition = window.SpeechRecognition || window.webkitSpeechRecognition;
if (SpeechRecognition) {
const recognition = new SpeechRecognition();
recognition.lang = 'en-US';
recognition.interimResults = false;
recognition.maxAlternatives = 1;
micBtn.onclick = () => {
recognition.start();
micBtn.textContent = 'πŸŽ™οΈ';
};
recognition.onresult = (event) => {
const transcript = event.results[0][0].transcript;
// Send transcript to Streamlit via custom event
const inputEvent = new CustomEvent("voiceInput", {detail: transcript});
streamlitDoc.dispatchEvent(inputEvent);
micBtn.textContent = '🎀';
};
recognition.onerror = (event) => {
console.error('Speech recognition error', event.error);
micBtn.textContent = '🎀';
};
} else {
micBtn.disabled = true;
micBtn.title = "Speech Recognition not supported in this browser.";
}
</script>
""",
unsafe_allow_html=True
)
# Listen for the custom event and update session state via Streamlit's experimental_rerun hack
# This requires a small hack using st.experimental_get_query_params and st.experimental_set_query_params
# We will use st.experimental_get_query_params to detect voice input from URL params
# Check if voice input is passed via query params
query_params = st.experimental_get_query_params()
if "voice_input" in query_params:
voice_text = query_params["voice_input"][0]
if voice_text != st.session_state.voice_question:
st.session_state.voice_question = voice_text
st.session_state.auto_run_search = True
# Clear the query param to avoid repeated triggers
st.experimental_set_query_params()
# Run semantic search automatically if flag is set
if st.session_state.auto_run_search:
st.session_state.auto_run_search = False
if not code_input.strip() or not st.session_state.voice_question.strip():
st.error("Both code and question are required.")
elif not code_matches_language(code_input, programming_language):
st.error(f"Language mismatch. Please check your code and language selection.")
else:
with st.spinner("Running Semantic Search..."):
answer = call_groq_api(f"{st.session_state.voice_question}\n\nCode:\n{code_input}")
st.success("Answer:")
st.write(answer)
# Also keep the manual button for fallback
if st.button("Run Semantic Search"):
if not code_input.strip() or not question.strip():
st.error("Both code and question are required.")
elif not code_matches_language(code_input, programming_language):
st.error(f"Language mismatch. Please check your code and language selection.")
else:
with st.spinner("Running Semantic Search..."):
answer = call_groq_api(f"{question}\n\nCode:\n{code_input}")
st.success("Answer:")
st.write(answer)