Naz786's picture
Update app.py
76b0cd2 verified
raw
history blame
8.16 kB
import streamlit as st
import difflib
import requests
import datetime
# --- CONFIG ---
GROQ_API_KEY = st.secrets.get('GROQ_API_KEY', 'YOUR_GROQ_API_KEY')
BLACKBOX_API_KEY = st.secrets.get('BLACKBOX_API_KEY', 'YOUR_BLACKBOX_API_KEY')
PROGRAMMING_LANGUAGES = ["Python", "JavaScript", "TypeScript", "Java", "C++", "C#"]
SKILL_LEVELS = ["Beginner", "Intermediate", "Expert"]
USER_ROLES = ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"]
EXPLANATION_LANGUAGES = ["English", "Spanish", "Chinese", "Urdu"]
EXAMPLE_QUESTIONS = [
"What does this function do?",
"How can I optimize this code?",
"What are the potential bugs in this code?",
"How does this algorithm work?",
"What design patterns are used here?",
"How can I make this code more readable?"
]
# --- API CALLS ---
def call_groq_api(prompt, model="llama3-70b-8192"):
headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"}
data = {"model": model, "messages": [{"role": "user", "content": prompt}]}
response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=data, headers=headers)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
else:
return f"[Groq API Error] {response.text}"
# def call_blackbox_agent(prompt):
# url = "https://api.code.blackbox.ai/v1/chat/completions"
# headers = {
# "Content-Type": "application/json",
# "Authorization": f"Bearer {BLACKBOX_API_KEY}"
# }
# data = {
# "message": prompt
# }
# response = requests.post(url, headers=headers, json=data)
# if response.status_code == 200:
# return response.json().get("response", response.json())
# #else:
# # return call_groq_api(prompt)
def call_blackbox_agent(prompt):
url = "https://api.code.blackbox.ai/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {BLACKBOX_API_KEY}"
}
data = {
"model": "code-chat",
"messages": [
{"role": "system", "content": "You are a helpful coding assistant."},
{"role": "user", "content": prompt}
]
}
response = requests.post(url, headers=headers, json=data)
if response.status_code == 200:
return response.json()["choices"][0]["message"]["content"]
# else:
# return call_groq_api(prompt)
# --- UTILS ---
def code_matches_language(code, language):
if language.lower() in code.lower():
return True
return True
def calculate_code_complexity(code):
lines = code.count('\n') + 1
return f"{lines} lines"
def get_inline_diff(original, modified):
diff = difflib.unified_diff(
original.splitlines(),
modified.splitlines(),
lineterm='',
fromfile='Original',
tofile='Refactored'
)
return '\n'.join(diff)
# --- STREAMLIT APP ---
st.set_page_config(page_title="Code Workflows", layout="wide")
st.title("CodeGenie")
# Navigation
page = st.sidebar.radio("Navigate", ["Home", "Code Workflow", "Semantic Search"])
if page == "Home":
st.header("Welcome to the Code Genie!")
st.markdown("""
- **Full Code Workflow:** Complete code analysis pipeline with explanation, refactoring, review, and testing (powered by Groq/Blackbox)
- **Semantic Search:** Ask natural language questions about your code and get intelligent answers
""")
st.info("Select a feature from the sidebar to get started.")
elif page == "Code Workflow":
st.header("Full Code Workflow")
code_input = st.text_area("Paste your code here", height=200)
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"])
if uploaded_file:
code_input = uploaded_file.read().decode("utf-8")
st.text_area("File content", code_input, height=200, key="file_content")
col1, col2, col3, col4 = st.columns(4)
with col1:
programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES)
with col2:
skill_level = st.selectbox("Skill Level", SKILL_LEVELS)
with col3:
user_role = st.selectbox("Your Role", USER_ROLES)
with col4:
explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES)
if code_input:
st.caption(f"Complexity: {calculate_code_complexity(code_input)}")
if st.button("Run Workflow", type="primary"):
if not code_input.strip():
st.error("Please paste or upload your code.")
elif not code_matches_language(code_input, programming_language):
st.error(f"Language mismatch. Please check your code and language selection.")
else:
with st.spinner("Running Code Workflow..."):
steps = [
("Explain", call_groq_api(f"Explain this {programming_language} code for a {skill_level} {user_role} in {explanation_language}:\n{code_input}")),
("Refactor", call_blackbox_agent(f"Refactor this {programming_language} code: {code_input}")),
("Review", call_groq_api(f"Review this {programming_language} code for errors and improvements: {code_input}")),
("ErrorDetection", call_groq_api(f"Find bugs in this {programming_language} code: {code_input}")),
("TestGeneration", call_groq_api(f"Generate tests for this {programming_language} code: {code_input}")),
]
timeline = []
for step, output in steps:
timeline.append({"step": step, "output": output})
st.success("Workflow complete!")
for t in timeline:
st.subheader(t["step"])
st.write(t["output"])
# Show code diff (Original vs Refactored)
st.subheader("Code Diff (Original vs Refactored)")
refactored_code = steps[1][1] # Blackbox agent output
st.code(get_inline_diff(code_input, refactored_code), language=programming_language.lower())
# Download report
report = f"Code Workflow Report\nGenerated on: {datetime.datetime.now()}\nLanguage: {programming_language}\nSkill Level: {skill_level}\nRole: {user_role}\n\n"
for t in timeline:
report += f"## {t['step']}\n{t['output']}\n\n---\n\n"
st.download_button("Download Report", report, file_name="ai_workflow_report.txt")
elif page == "Semantic Search":
st.header("Semantic Search")
code_input = st.text_area("Paste your code here", height=200, key="sem_code")
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="sem_file")
if uploaded_file:
code_input = uploaded_file.read().decode("utf-8")
st.text_area("File content", code_input, height=200, key="sem_file_content")
col1, col2, col3, col4 = st.columns(4)
with col1:
programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="sem_lang")
with col2:
skill_level = st.selectbox("Skill Level", SKILL_LEVELS, key="sem_skill")
with col3:
user_role = st.selectbox("Your Role", USER_ROLES, key="sem_role")
with col4:
explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES, key="sem_expl")
question = st.text_input("Ask a question about your code")
st.caption("Example questions:")
st.write(", ".join(EXAMPLE_QUESTIONS))
if st.button("Run Semantic Search"):
if not code_input.strip() or not question.strip():
st.error("Both code and question are required.")
elif not code_matches_language(code_input, programming_language):
st.error(f"Language mismatch. Please check your code and language selection.")
else:
with st.spinner("Running Semantic Search..."):
answer = call_groq_api(f"{question}\n\nCode:\n{code_input}")
st.success("Answer:")
st.write(answer)