Naz786's picture
Update app.py
e805de7 verified
raw
history blame
16 kB
import streamlit as st
from PIL import Image
import tempfile
import os
import numpy as np
import cv2
import torch
import difflib
import re
import requests
import datetime
import streamlit.components.v1 as components
import io
from diffusers import DiffusionPipeline
from moviepy.editor import ImageSequenceClip
import insightface
from insightface.app import FaceAnalysis
from insightface.utils import face_align
# --- CONFIG ---
# Place your API keys here
GROQ_API_KEY = st.secrets.get('GROQ_API_KEY', 'YOUR_GROQ_API_KEY')
BLACKBOX_API_KEY = st.secrets.get('BLACKBOX_API_KEY', 'YOUR_BLACKBOX_API_KEY')
PROGRAMMING_LANGUAGES = ["Python", "JavaScript", "TypeScript", "Java", "C++", "C#"]
SKILL_LEVELS = ["Beginner", "Intermediate", "Expert"]
USER_ROLES = ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"]
EXPLANATION_LANGUAGES = ["English", "Spanish", "Chinese", "Urdu"]
EXAMPLE_QUESTIONS = [
"What does this function do?",
"How can I optimize this code?",
"What are the potential bugs in this code?",
"How does this algorithm work?",
"What design patterns are used here?",
"How can I make this code more readable?"
]
LANGUAGE_KEYWORDS = {
"Python": ["def ", "import ", "self", "print(", "lambda", "None"],
"JavaScript": ["function ", "console.log", "var ", "let ", "const ", "=>"],
"TypeScript": ["interface ", "type ", ": string", ": number", "export ", "import "],
"Java": ["public class", "System.out.println", "void main", "import java.", "new "],
"C++": ["#include", "std::", "cout <<", "cin >>", "int main(", "using namespace"],
"C#": ["using System;", "namespace ", "public class", "Console.WriteLine", "static void Main"]
}
# --- API STUBS ---
def call_groq_api(prompt, model="llama3-70b-8192"):
# Replace with actual Groq API call
headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"}
data = {"model": model, "messages": [{"role": "user", "content": prompt}]}
response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=data, headers=headers)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
else:
return f"[Groq API Error] {response.text}"
def call_blackbox_agent(messages):
url = "https://api.blackbox.ai/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {BLACKBOX_API_KEY}"
}
data = {
"model": "code-chat",
"messages": messages
}
response = requests.post(url, headers=headers, json=data)
if response.status_code == 200:
return response.json()["choices"][0]["message"]["content"]
else:
return call_groq_api(messages[-1]["content"])
# --- UTILS ---
def code_matches_language(code, language):
keywords = LANGUAGE_KEYWORDS.get(language, [])
return any(kw in code for kw in keywords)
def calculate_code_complexity(code):
# Dummy complexity metric
lines = code.count('\n') + 1
return f"{lines} lines"
def get_inline_diff(original, modified):
diff = difflib.unified_diff(
original.splitlines(),
modified.splitlines(),
lineterm='',
fromfile='Original',
tofile='Refactored'
)
return '\n'.join(diff)
def is_coding_question(question):
"""
Uses Blackbox AI agent to check if the question is about programming/code.
Returns True if yes, False otherwise.
"""
messages = [
{"role": "system", "content": "You are a helpful coding assistant."},
{"role": "user", "content": f"Is the following question about programming or code? Answer only 'yes' or 'no'. Question: {question}"}
]
try:
response = call_blackbox_agent(messages)
return 'yes' in response.lower()
except Exception:
return False
def get_explanation_prompt(code, programming_language, skill_level, user_role, explanation_language, question=None):
lang_instruction = ""
if explanation_language != "English":
lang_instruction = f" Respond in {explanation_language}."
if question:
return f"{question}\n\nCode:\n{code}\n{lang_instruction}"
return (
f"Explain this {programming_language} code for a {skill_level} {user_role}.{lang_instruction}\n{code}"
)
# --- SESSION STATE FOR CHAT HISTORY ---
if "workflow_history" not in st.session_state:
st.session_state.workflow_history = []
if "semantic_history" not in st.session_state:
st.session_state.semantic_history = []
if "comment_history" not in st.session_state:
st.session_state.comment_history = []
# --- STREAMLIT APP ---
st.set_page_config(page_title="Code Workflows", layout="wide")
st.title("Code Genie")
# Navigation
page = st.sidebar.radio("Navigate", ["Home", "Code Workflows", "Semantic Search", "Code Comment Generator"])
if page == "Home":
st.header("Welcome to the Code Genie!")
st.markdown("""
- **Full Code Workflow:** Complete code analysis pipeline with explanation, refactoring, review, and testing (powered by Groq/Blackbox)
- **Semantic Search:** Ask natural language questions about your code and get intelligent answers
- **Code Comment Generator:** Helps you add helpful comments to your code for better readability
""")
st.info("Select a feature from the sidebar to get started.")
elif page == "Code Workflows":
st.header("Full Code Workflows")
code_input = st.text_area("Paste your code here", height=200)
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"])
if uploaded_file:
code_input = uploaded_file.read().decode("utf-8")
st.text_area("File content", code_input, height=200, key="file_content")
col1, col2, col3, col4 = st.columns(4)
with col1:
programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES)
with col2:
skill_level = st.selectbox("Skill Level", SKILL_LEVELS)
with col3:
user_role = st.selectbox("Your Role", USER_ROLES)
with col4:
explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES)
if code_input:
st.caption(f"Complexity: {calculate_code_complexity(code_input)}")
if st.button("Run Workflow", type="primary"):
if not code_input.strip():
st.error("Please paste or upload your code.")
elif not code_matches_language(code_input, programming_language):
st.error(f"Language mismatch. Please check your code and language selection.")
else:
with st.spinner("Running AI Workflow..."):
steps = [
("Explain", call_groq_api(get_explanation_prompt(code_input, programming_language, skill_level, user_role, explanation_language))),
("Refactor", call_blackbox_agent([
{"role": "system", "content": "You are a helpful coding assistant."},
{"role": "user", "content": f"Refactor this {programming_language} code: {code_input}"}
])),
("Review", call_groq_api(f"Review this {programming_language} code for errors and improvements: {code_input}")),
("ErrorDetection", call_groq_api(f"Find bugs in this {programming_language} code: {code_input}")),
("TestGeneration", call_groq_api(f"Generate tests for this {programming_language} code: {code_input}")),
]
timeline = []
for step, output in steps:
timeline.append({"step": step, "output": output})
st.success("Workflow complete!")
for t in timeline:
st.subheader(t["step"])
st.write(t["output"])
# Show code diff (dummy for now)
st.subheader("Code Diff (Original vs Refactored)")
refactored_code = steps[1][1] # Blackbox agent output
st.code(get_inline_diff(code_input, refactored_code), language=programming_language.lower())
# Download report
report = f"AI Workflow Report\nGenerated on: {datetime.datetime.now()}\nLanguage: {programming_language}\nSkill Level: {skill_level}\nRole: {user_role}\n\n"
for t in timeline:
report += f"## {t['step']}\n{t['output']}\n\n---\n\n"
st.download_button("Download Report", report, file_name="ai_workflow_report.txt")
# Save to chat history
st.session_state.workflow_history.append({
"timestamp": str(datetime.datetime.now()),
"user_code": code_input,
"params": {
"language": programming_language,
"skill": skill_level,
"role": user_role,
"explanation_language": explanation_language
},
"timeline": timeline,
"refactored_code": refactored_code
})
# Show chat history for workflows
st.markdown("### Workflow Chat History")
if st.button("Clear Workflow History"):
st.session_state.workflow_history = []
for entry in reversed(st.session_state.workflow_history):
st.markdown(f"**[{entry['timestamp']}]**")
st.code(entry["user_code"], language=entry["params"]["language"].lower())
for t in entry["timeline"]:
st.subheader(t["step"])
st.write(t["output"])
st.subheader("Code Diff (Original vs Refactored)")
st.code(get_inline_diff(entry["user_code"], entry["refactored_code"]), language=entry["params"]["language"].lower())
st.markdown("---")
elif page == "Semantic Search":
st.header("Semantic Search")
code_input = st.text_area("Paste your code here", height=200, key="sem_code")
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="sem_file")
if uploaded_file:
code_input = uploaded_file.read().decode("utf-8")
st.text_area("File content", code_input, height=200, key="sem_file_content")
col1, col2, col3, col4 = st.columns(4)
with col1:
programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="sem_lang")
with col2:
skill_level = st.selectbox("Skill Level", SKILL_LEVELS, key="sem_skill")
with col3:
user_role = st.selectbox("Your Role", USER_ROLES, key="sem_role")
with col4:
explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES, key="sem_expl")
st.caption("Example questions:")
st.write(", ".join(EXAMPLE_QUESTIONS))
# Only text input for question
question = st.text_input("Ask a question about your code", key="sem_question")
# Run Semantic Search button
if st.button("Run Semantic Search"):
if not code_input.strip() or not question.strip():
st.error("Both code and question are required.")
elif not code_matches_language(code_input, programming_language):
st.error(f"Language mismatch. Please check your code and language selection.")
else:
with st.spinner("Running Semantic Search..."):
prompt = get_explanation_prompt(code_input, programming_language, skill_level, user_role, explanation_language, question=question)
answer = call_groq_api(prompt)
st.success("Answer:")
st.write(answer)
# Save to chat history
st.session_state.semantic_history.append({
"timestamp": str(datetime.datetime.now()),
"user_code": code_input,
"question": question,
"params": {
"language": programming_language,
"skill": skill_level,
"role": user_role,
"explanation_language": explanation_language
},
"answer": answer
})
# Show chat history for semantic search
st.markdown("### Semantic Search Chat History")
if st.button("Clear Semantic History"):
st.session_state.semantic_history = []
for entry in reversed(st.session_state.semantic_history):
st.markdown(f"**[{entry['timestamp']}]**")
st.code(entry["user_code"], language=entry["params"]["language"].lower())
st.markdown(f"**Q:** {entry['question']}")
st.markdown(f"**A:** {entry['answer']}")
st.markdown("---")
elif page == "Code Comment Generator":
st.header("Code Comment Generator")
code_input = st.text_area("Paste your code here", height=200, key="comment_code")
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="comment_file")
if uploaded_file:
code_input = uploaded_file.read().decode("utf-8")
st.text_area("File content", code_input, height=200, key="comment_file_content")
programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="comment_lang")
if st.button("Generate Comments"):
if not code_input.strip():
st.error("Please paste or upload your code.")
elif not code_matches_language(code_input, programming_language):
st.error(f"Language mismatch. Please check your code and language selection.")
else:
with st.spinner("Generating commented code..."):
prompt = (
f"Add clear, helpful comments to this {programming_language} code. "
"Keep the code unchanged except for adding comments. "
"Return the full code with comments:\n\n"
f"{code_input}"
)
commented_code = call_blackbox_agent([
{"role": "system", "content": "You are a helpful coding assistant."},
{"role": "user", "content": prompt}
])
st.success("Commented code generated!")
st.code(commented_code, language=programming_language.lower())
st.download_button("Download Commented Code", commented_code, file_name="commented_code.txt")
# Save to chat history
st.session_state.comment_history.append({
"timestamp": str(datetime.datetime.now()),
"user_code": code_input,
"params": {
"language": programming_language
},
"commented_code": commented_code
})
# Show chat history for code comments
st.markdown("### Code Comment Chat History")
if st.button("Clear Comment History"):
st.session_state.comment_history = []
for entry in reversed(st.session_state.comment_history):
st.markdown(f"**[{entry['timestamp']}]**")
st.code(entry["user_code"], language=entry["params"]["language"].lower())
st.markdown("**Commented Code:**")
st.code(entry["commented_code"], language=entry["params"]["language"].lower())
st.markdown("---")
st.markdown("---")
st.write("Powered by AnimateDiff (zeroscope), InsightFace, and moviepy.")
def split_code_into_chunks(code, lang):
if lang.lower() == "python":
# Corrected regex pattern for Python code splitting
pattern = r'(def\s+\w+\(.*?\):|class\s+\w+\(.*?\)?:)'
splits = re.split(pattern, code)
chunks = []
for i in range(1, len(splits), 2):
header = splits[i]
body = splits[i+1] if (i+1) < len(splits) else ""
chunks.append(header + body)
return chunks if chunks else [code]
else:
return [code]