Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,10 @@ import streamlit as st
|
|
2 |
import difflib
|
3 |
import requests
|
4 |
import datetime
|
|
|
5 |
|
6 |
# --- CONFIG ---
|
|
|
7 |
GROQ_API_KEY = st.secrets.get('GROQ_API_KEY', 'YOUR_GROQ_API_KEY')
|
8 |
BLACKBOX_API_KEY = st.secrets.get('BLACKBOX_API_KEY', 'YOUR_BLACKBOX_API_KEY')
|
9 |
|
@@ -20,8 +22,9 @@ EXAMPLE_QUESTIONS = [
|
|
20 |
"How can I make this code more readable?"
|
21 |
]
|
22 |
|
23 |
-
# --- API
|
24 |
def call_groq_api(prompt, model="llama3-70b-8192"):
|
|
|
25 |
headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"}
|
26 |
data = {"model": model, "messages": [{"role": "user", "content": prompt}]}
|
27 |
response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=data, headers=headers)
|
@@ -30,38 +33,32 @@ def call_groq_api(prompt, model="llama3-70b-8192"):
|
|
30 |
else:
|
31 |
return f"[Groq API Error] {response.text}"
|
32 |
|
33 |
-
def call_blackbox_agent(messages
|
34 |
-
""
|
35 |
-
messages: list of dicts, e.g.
|
36 |
-
[
|
37 |
-
{"role": "system", "content": "You are a helpful coding assistant."},
|
38 |
-
{"role": "user", "content": "Refactor this code: ..."}
|
39 |
-
]
|
40 |
-
"""
|
41 |
-
url = "https://api.blackbox.ai/v1/chat/completions"
|
42 |
headers = {
|
43 |
"Content-Type": "application/json",
|
44 |
"Authorization": f"Bearer {BLACKBOX_API_KEY}"
|
45 |
}
|
46 |
data = {
|
47 |
-
"model":
|
48 |
"messages": messages
|
49 |
}
|
50 |
response = requests.post(url, headers=headers, json=data)
|
51 |
if response.status_code == 200:
|
52 |
return response.json()["choices"][0]["message"]["content"]
|
53 |
else:
|
|
|
54 |
return call_groq_api(messages[-1]["content"])
|
55 |
|
56 |
-
|
57 |
-
|
58 |
# --- UTILS ---
|
59 |
def code_matches_language(code, language):
|
|
|
60 |
if language.lower() in code.lower():
|
61 |
return True
|
62 |
-
return True
|
63 |
|
64 |
def calculate_code_complexity(code):
|
|
|
65 |
lines = code.count('\n') + 1
|
66 |
return f"{lines} lines"
|
67 |
|
@@ -75,23 +72,38 @@ def get_inline_diff(original, modified):
|
|
75 |
)
|
76 |
return '\n'.join(diff)
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
# --- STREAMLIT APP ---
|
79 |
-
st.set_page_config(page_title="
|
80 |
-
st.title("
|
81 |
|
82 |
# Navigation
|
83 |
-
page = st.sidebar.radio("Navigate", ["Home", "
|
84 |
|
85 |
if page == "Home":
|
86 |
-
st.header("Welcome to the
|
87 |
st.markdown("""
|
88 |
-
- **Full
|
89 |
- **Semantic Search:** Ask natural language questions about your code and get intelligent answers
|
90 |
""")
|
91 |
st.info("Select a feature from the sidebar to get started.")
|
92 |
|
93 |
-
elif page == "
|
94 |
-
st.header("Full
|
95 |
code_input = st.text_area("Paste your code here", height=200)
|
96 |
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"])
|
97 |
if uploaded_file:
|
@@ -114,13 +126,14 @@ elif page == "Code Workflow":
|
|
114 |
elif not code_matches_language(code_input, programming_language):
|
115 |
st.error(f"Language mismatch. Please check your code and language selection.")
|
116 |
else:
|
117 |
-
with st.spinner("Running
|
|
|
118 |
steps = [
|
119 |
("Explain", call_groq_api(f"Explain this {programming_language} code for a {skill_level} {user_role} in {explanation_language}:\n{code_input}")),
|
120 |
("Refactor", call_blackbox_agent([
|
121 |
-
|
122 |
-
|
123 |
-
])),
|
124 |
("Review", call_groq_api(f"Review this {programming_language} code for errors and improvements: {code_input}")),
|
125 |
("ErrorDetection", call_groq_api(f"Find bugs in this {programming_language} code: {code_input}")),
|
126 |
("TestGeneration", call_groq_api(f"Generate tests for this {programming_language} code: {code_input}")),
|
@@ -137,7 +150,7 @@ elif page == "Code Workflow":
|
|
137 |
refactored_code = steps[1][1] # Blackbox agent output
|
138 |
st.code(get_inline_diff(code_input, refactored_code), language=programming_language.lower())
|
139 |
# Download report
|
140 |
-
report = f"
|
141 |
for t in timeline:
|
142 |
report += f"## {t['step']}\n{t['output']}\n\n---\n\n"
|
143 |
st.download_button("Download Report", report, file_name="ai_workflow_report.txt")
|
@@ -158,82 +171,76 @@ elif page == "Semantic Search":
|
|
158 |
user_role = st.selectbox("Your Role", USER_ROLES, key="sem_role")
|
159 |
with col4:
|
160 |
explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES, key="sem_expl")
|
161 |
-
import streamlit.components.v1 as components
|
162 |
-
|
163 |
-
# Initialize session state variables
|
164 |
-
if "voice_question" not in st.session_state:
|
165 |
-
st.session_state.voice_question = ""
|
166 |
-
if "auto_run_search" not in st.session_state:
|
167 |
-
st.session_state.auto_run_search = False
|
168 |
-
|
169 |
-
# Layout: question input and mic button side by side
|
170 |
-
col_question, col_mic = st.columns([9,1])
|
171 |
-
with col_question:
|
172 |
-
question = st.text_input("Ask a question about your code", value=st.session_state.voice_question, key="question_input")
|
173 |
-
with col_mic:
|
174 |
-
# Microphone button and JS for voice recognition embedded via components.html
|
175 |
-
components.html(
|
176 |
-
"""
|
177 |
-
<button id="mic-btn" style="height:38px; width:38px; font-size:20px;">🎤</button>
|
178 |
-
<script>
|
179 |
-
const micBtn = document.getElementById('mic-btn');
|
180 |
-
const SpeechRecognition = window.SpeechRecognition || window.webkitSpeechRecognition;
|
181 |
-
if (!SpeechRecognition) {
|
182 |
-
alert("Speech Recognition not supported in this browser.");
|
183 |
-
micBtn.disabled = true;
|
184 |
-
} else {
|
185 |
-
const recognition = new SpeechRecognition();
|
186 |
-
recognition.lang = 'en-US';
|
187 |
-
recognition.interimResults = false;
|
188 |
-
recognition.maxAlternatives = 1;
|
189 |
-
|
190 |
-
micBtn.onclick = () => {
|
191 |
-
recognition.start();
|
192 |
-
micBtn.textContent = '🎙️';
|
193 |
-
};
|
194 |
-
|
195 |
-
recognition.onresult = (event) => {
|
196 |
-
const transcript = event.results[0][0].transcript;
|
197 |
-
// Send transcript to Streamlit by updating the input field
|
198 |
-
const inputBox = window.parent.document.querySelector('input[data-key="question_input"]');
|
199 |
-
if (inputBox) {
|
200 |
-
inputBox.value = transcript;
|
201 |
-
inputBox.dispatchEvent(new Event('input', { bubbles: true }));
|
202 |
-
}
|
203 |
-
micBtn.textContent = '🎤';
|
204 |
-
};
|
205 |
-
|
206 |
-
recognition.onerror = (event) => {
|
207 |
-
console.error('Speech recognition error', event.error);
|
208 |
-
micBtn.textContent = '🎤';
|
209 |
-
};
|
210 |
-
}
|
211 |
-
</script>
|
212 |
-
""",
|
213 |
-
height=50,
|
214 |
-
scrolling=False,
|
215 |
-
)
|
216 |
-
|
217 |
-
# Update session state voice_question if question input changed manually or by voice
|
218 |
-
if question != st.session_state.voice_question:
|
219 |
-
st.session_state.voice_question = question
|
220 |
-
st.session_state.auto_run_search = True
|
221 |
-
|
222 |
-
# Automatically run semantic search if flag is set
|
223 |
-
if st.session_state.auto_run_search:
|
224 |
-
st.session_state.auto_run_search = False
|
225 |
-
if not code_input.strip() or not st.session_state.voice_question.strip():
|
226 |
-
st.error("Both code and question are required.")
|
227 |
-
elif not code_matches_language(code_input, programming_language):
|
228 |
-
st.error(f"Language mismatch. Please check your code and language selection.")
|
229 |
-
else:
|
230 |
-
with st.spinner("Running Semantic Search..."):
|
231 |
-
answer = call_groq_api(f"{st.session_state.voice_question}\n\nCode:\n{code_input}")
|
232 |
-
st.success("Answer:")
|
233 |
-
st.write(answer)
|
234 |
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
if not code_input.strip() or not question.strip():
|
238 |
st.error("Both code and question are required.")
|
239 |
elif not code_matches_language(code_input, programming_language):
|
@@ -242,4 +249,4 @@ elif page == "Semantic Search":
|
|
242 |
with st.spinner("Running Semantic Search..."):
|
243 |
answer = call_groq_api(f"{question}\n\nCode:\n{code_input}")
|
244 |
st.success("Answer:")
|
245 |
-
st.write(answer)
|
|
|
2 |
import difflib
|
3 |
import requests
|
4 |
import datetime
|
5 |
+
import streamlit.components.v1 as components
|
6 |
|
7 |
# --- CONFIG ---
|
8 |
+
# Place your API keys here
|
9 |
GROQ_API_KEY = st.secrets.get('GROQ_API_KEY', 'YOUR_GROQ_API_KEY')
|
10 |
BLACKBOX_API_KEY = st.secrets.get('BLACKBOX_API_KEY', 'YOUR_BLACKBOX_API_KEY')
|
11 |
|
|
|
22 |
"How can I make this code more readable?"
|
23 |
]
|
24 |
|
25 |
+
# --- API STUBS ---
|
26 |
def call_groq_api(prompt, model="llama3-70b-8192"):
|
27 |
+
# Replace with actual Groq API call
|
28 |
headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"}
|
29 |
data = {"model": model, "messages": [{"role": "user", "content": prompt}]}
|
30 |
response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=data, headers=headers)
|
|
|
33 |
else:
|
34 |
return f"[Groq API Error] {response.text}"
|
35 |
|
36 |
+
def call_blackbox_agent(messages):
|
37 |
+
url = "https://api.code.blackbox.ai/v1/chat/completions"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
headers = {
|
39 |
"Content-Type": "application/json",
|
40 |
"Authorization": f"Bearer {BLACKBOX_API_KEY}"
|
41 |
}
|
42 |
data = {
|
43 |
+
"model": "code-chat",
|
44 |
"messages": messages
|
45 |
}
|
46 |
response = requests.post(url, headers=headers, json=data)
|
47 |
if response.status_code == 200:
|
48 |
return response.json()["choices"][0]["message"]["content"]
|
49 |
else:
|
50 |
+
# fallback to Groq if Blackbox fails
|
51 |
return call_groq_api(messages[-1]["content"])
|
52 |
|
|
|
|
|
53 |
# --- UTILS ---
|
54 |
def code_matches_language(code, language):
|
55 |
+
# Simple heuristic, can be improved
|
56 |
if language.lower() in code.lower():
|
57 |
return True
|
58 |
+
return True # For demo, always True
|
59 |
|
60 |
def calculate_code_complexity(code):
|
61 |
+
# Dummy complexity metric
|
62 |
lines = code.count('\n') + 1
|
63 |
return f"{lines} lines"
|
64 |
|
|
|
72 |
)
|
73 |
return '\n'.join(diff)
|
74 |
|
75 |
+
def is_coding_question(question):
|
76 |
+
"""
|
77 |
+
Uses Blackbox AI agent to check if the question is about programming/code.
|
78 |
+
Returns True if yes, False otherwise.
|
79 |
+
"""
|
80 |
+
messages = [
|
81 |
+
{"role": "system", "content": "You are a helpful coding assistant."},
|
82 |
+
{"role": "user", "content": f"Is the following question about programming or code? Answer only 'yes' or 'no'. Question: {question}"}
|
83 |
+
]
|
84 |
+
try:
|
85 |
+
response = call_blackbox_agent(messages)
|
86 |
+
return 'yes' in response.lower()
|
87 |
+
except Exception:
|
88 |
+
return False
|
89 |
+
|
90 |
# --- STREAMLIT APP ---
|
91 |
+
st.set_page_config(page_title="AI Workflow App", layout="wide")
|
92 |
+
st.title("AI Assistant with Workflow (Streamlit Edition)")
|
93 |
|
94 |
# Navigation
|
95 |
+
page = st.sidebar.radio("Navigate", ["Home", "AI Workflow", "Semantic Search"])
|
96 |
|
97 |
if page == "Home":
|
98 |
+
st.header("Welcome to the AI Assistant!")
|
99 |
st.markdown("""
|
100 |
+
- **Full AI Workflow:** Complete code analysis pipeline with explanation, refactoring, review, and testing (powered by Groq/Blackbox)
|
101 |
- **Semantic Search:** Ask natural language questions about your code and get intelligent answers
|
102 |
""")
|
103 |
st.info("Select a feature from the sidebar to get started.")
|
104 |
|
105 |
+
elif page == "AI Workflow":
|
106 |
+
st.header("Full AI Workflow")
|
107 |
code_input = st.text_area("Paste your code here", height=200)
|
108 |
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"])
|
109 |
if uploaded_file:
|
|
|
126 |
elif not code_matches_language(code_input, programming_language):
|
127 |
st.error(f"Language mismatch. Please check your code and language selection.")
|
128 |
else:
|
129 |
+
with st.spinner("Running AI Workflow..."):
|
130 |
+
# Simulate workflow steps
|
131 |
steps = [
|
132 |
("Explain", call_groq_api(f"Explain this {programming_language} code for a {skill_level} {user_role} in {explanation_language}:\n{code_input}")),
|
133 |
("Refactor", call_blackbox_agent([
|
134 |
+
{"role": "system", "content": "You are a helpful coding assistant."},
|
135 |
+
{"role": "user", "content": f"Refactor this {programming_language} code: {code_input}"}
|
136 |
+
])),
|
137 |
("Review", call_groq_api(f"Review this {programming_language} code for errors and improvements: {code_input}")),
|
138 |
("ErrorDetection", call_groq_api(f"Find bugs in this {programming_language} code: {code_input}")),
|
139 |
("TestGeneration", call_groq_api(f"Generate tests for this {programming_language} code: {code_input}")),
|
|
|
150 |
refactored_code = steps[1][1] # Blackbox agent output
|
151 |
st.code(get_inline_diff(code_input, refactored_code), language=programming_language.lower())
|
152 |
# Download report
|
153 |
+
report = f"AI Workflow Report\nGenerated on: {datetime.datetime.now()}\nLanguage: {programming_language}\nSkill Level: {skill_level}\nRole: {user_role}\n\n"
|
154 |
for t in timeline:
|
155 |
report += f"## {t['step']}\n{t['output']}\n\n---\n\n"
|
156 |
st.download_button("Download Report", report, file_name="ai_workflow_report.txt")
|
|
|
171 |
user_role = st.selectbox("Your Role", USER_ROLES, key="sem_role")
|
172 |
with col4:
|
173 |
explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES, key="sem_expl")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
+
st.caption("Example questions:")
|
176 |
+
st.write(", ".join(EXAMPLE_QUESTIONS))
|
177 |
+
|
178 |
+
# Session state for question and trigger
|
179 |
+
if 'voice_question' not in st.session_state:
|
180 |
+
st.session_state['voice_question'] = ''
|
181 |
+
if 'run_semantic_search' not in st.session_state:
|
182 |
+
st.session_state['run_semantic_search'] = False
|
183 |
+
|
184 |
+
# Voice input widget (Web Speech API)
|
185 |
+
components.html('''
|
186 |
+
<button id="voice-btn" style="margin-bottom:8px;">🎤 Speak your question</button>
|
187 |
+
<span id="voice-status" style="margin-left:8px;"></span>
|
188 |
+
<script>
|
189 |
+
const btn = document.getElementById('voice-btn');
|
190 |
+
const status = document.getElementById('voice-status');
|
191 |
+
let recognition;
|
192 |
+
if ('webkitSpeechRecognition' in window) {
|
193 |
+
recognition = new webkitSpeechRecognition();
|
194 |
+
recognition.lang = 'en-US';
|
195 |
+
recognition.continuous = false;
|
196 |
+
recognition.interimResults = false;
|
197 |
+
btn.onclick = function() {
|
198 |
+
recognition.start();
|
199 |
+
status.textContent = 'Listening...';
|
200 |
+
};
|
201 |
+
recognition.onresult = function(event) {
|
202 |
+
const transcript = event.results[0][0].transcript;
|
203 |
+
window.parent.postMessage({isStreamlitMessage: true, type: 'streamlit:setComponentValue', value: transcript}, '*');
|
204 |
+
status.textContent = 'Heard: ' + transcript;
|
205 |
+
};
|
206 |
+
recognition.onerror = function() {
|
207 |
+
status.textContent = 'Voice error';
|
208 |
+
};
|
209 |
+
recognition.onend = function() {
|
210 |
+
if (status.textContent === 'Listening...') status.textContent = '';
|
211 |
+
};
|
212 |
+
} else {
|
213 |
+
btn.disabled = true;
|
214 |
+
status.textContent = 'Voice not supported';
|
215 |
+
}
|
216 |
+
</script>
|
217 |
+
''', height=60)
|
218 |
+
|
219 |
+
# --- Main question input ---
|
220 |
+
question = st.text_input("Ask a question about your code", value=st.session_state.get('voice_question', ''), key="sem_question")
|
221 |
+
|
222 |
+
# If voice input is received, validate and set question
|
223 |
+
# NOTE: Streamlit's JS->Python communication for custom components is limited.
|
224 |
+
# For a production app, use a robust Streamlit component for voice input.
|
225 |
+
# Here, we simulate the process using session_state for demonstration.
|
226 |
+
# You may need to use streamlit_js_eval or a similar package for real-time JS->Python value passing.
|
227 |
+
|
228 |
+
# Simulate voice input: check if the question was updated by voice
|
229 |
+
if st.session_state.get('voice_question', '') and not st.session_state.get('run_semantic_search', False):
|
230 |
+
voice_input = st.session_state['voice_question']
|
231 |
+
if is_coding_question(voice_input):
|
232 |
+
st.session_state['run_semantic_search'] = True
|
233 |
+
st.success(f"Question recognized: {voice_input}")
|
234 |
+
else:
|
235 |
+
st.warning("Please ask a relevant question.")
|
236 |
+
st.session_state['voice_question'] = '' # reset
|
237 |
+
|
238 |
+
# Run Semantic Search button
|
239 |
+
run_btn = st.button("Run Semantic Search")
|
240 |
+
# If triggered by voice or button
|
241 |
+
run_search = run_btn or st.session_state.get('run_semantic_search', False)
|
242 |
+
if run_search:
|
243 |
+
st.session_state['run_semantic_search'] = False # reset trigger
|
244 |
if not code_input.strip() or not question.strip():
|
245 |
st.error("Both code and question are required.")
|
246 |
elif not code_matches_language(code_input, programming_language):
|
|
|
249 |
with st.spinner("Running Semantic Search..."):
|
250 |
answer = call_groq_api(f"{question}\n\nCode:\n{code_input}")
|
251 |
st.success("Answer:")
|
252 |
+
st.write(answer)
|