Naz786 commited on
Commit
9b13ff2
·
verified ·
1 Parent(s): 7ca69c2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +347 -274
app.py CHANGED
@@ -1,148 +1,119 @@
1
- import streamlit as st
2
  import difflib
3
- import os
4
- import re
5
- import hashlib
6
  from groq import Groq
 
7
 
8
- # --- Page config ---
9
- st.set_page_config(page_title="🚀 AI Assistant with Workflow + Semantic Search", layout="wide")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  # --- Groq API Setup ---
12
  GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
13
  if not GROQ_API_KEY:
14
- st.error(" Please set your GROQ_API_KEY environment variable.")
15
  st.stop()
16
  client = Groq(api_key=GROQ_API_KEY)
17
 
18
- # --- Cache for embeddings ---
19
- embedding_cache = {}
20
-
21
- def get_embedding(text):
22
- key = hashlib.sha256(text.encode()).hexdigest()
23
- if key in embedding_cache:
24
- return embedding_cache[key]
25
- embedding = [ord(c) % 100 / 100 for c in text[:512]]
26
- embedding_cache[key] = embedding
27
- return embedding
28
-
29
- def cosine_similarity(vec1, vec2):
30
- dot = sum(a*b for a,b in zip(vec1, vec2))
31
- norm1 = sum(a*a for a in vec1) ** 0.5
32
- norm2 = sum(b*b for b in vec2) ** 0.5
33
- return dot / (norm1 * norm2 + 1e-8)
34
-
35
- def split_code_into_chunks(code, lang):
36
- if lang.lower() == "python":
37
- pattern = r'(def\s+\w+\(.*?\):|class\s+\w+\(?.*?\)?:)'
38
- splits = re.split(pattern, code)
39
- chunks = []
40
- for i in range(1, len(splits), 2):
41
- header = splits[i]
42
- body = splits[i+1] if (i+1) < len(splits) else ""
43
- chunks.append(header + body)
44
- return chunks if chunks else [code]
45
- else:
46
- return [code]
47
 
48
- def groq_call(prompt):
49
- resp = client.chat.completions.create(
50
  messages=[{"role": "user", "content": prompt}],
51
  model="llama3-70b-8192",
52
  )
53
- return resp.choices[0].message.content
54
-
55
- def semantic_search_improved(code, question, lang, skill, role, explain_lang):
56
- chunks = split_code_into_chunks(code, lang)
57
- question_emb = get_embedding(question)
58
- scored_chunks = []
59
- for chunk in chunks:
60
- emb = get_embedding(chunk)
61
- score = cosine_similarity(question_emb, emb)
62
- scored_chunks.append((score, chunk))
63
- scored_chunks.sort(key=lambda x: x[0], reverse=True)
64
- top_chunks = [c for _, c in scored_chunks[:3]]
65
- combined_code = "\n\n".join(top_chunks)
66
- prompt = (
67
- f"You are a friendly and insightful {lang} expert helping a {skill} {role}.\n"
68
- f"Based on these relevant code snippets:\n{combined_code}\n"
69
- f"Answer this question in {explain_lang}:\n{question}\n"
70
- f"Explain which parts handle the question and how to modify them if needed."
71
- )
72
- return groq_call(prompt)
73
-
74
- def error_detection_and_fixes(refactored_code, lang, skill, role, explain_lang):
75
- prompt = (
76
- f"You are a senior {lang} developer. Analyze this code for bugs, security flaws, "
77
- f"and performance issues. Suggest fixes with explanations in {explain_lang}:\n\n{refactored_code}"
78
- )
79
- return groq_call(prompt)
80
-
81
- def agentic_workflow(code, skill_level, programming_language, explanation_language, user_role):
82
- timeline = []
83
- suggestions = []
84
-
85
- # Explanation
86
- explain_prompt = (
87
- f"You are a friendly and insightful {programming_language} expert helping a {skill_level} {user_role}. "
88
- f"Explain this code in {explanation_language} with clear examples, analogies, and why each part matters:\n\n{code}"
89
- )
90
- explanation = groq_call(explain_prompt)
91
- timeline.append({"step": "Explain", "description": "Detailed explanation", "output": explanation, "code": code})
92
- suggestions.append("Consider refactoring your code to improve readability and performance.")
93
-
94
- # Refactor
95
- refactor_prompt = (
96
- f"Refactor this {programming_language} code. Explain the changes like a mentor helping a {skill_level} {user_role}. "
97
- f"Include best practices and improvements:\n\n{code}"
98
- )
99
- refactor_response = groq_call(refactor_prompt)
100
- if "```" in refactor_response:
101
- parts = refactor_response.split("```")
102
- refactored_code = ""
103
- for part in parts:
104
- if part.strip().startswith(programming_language.lower()):
105
- refactored_code = part.strip().split('\n', 1)[1] if '\n' in part else ""
106
- break
107
- if not refactored_code:
108
- refactored_code = refactor_response
109
- else:
110
- refactored_code = refactor_response
111
- timeline.append({"step": "Refactor", "description": "Refactored code with improvements", "output": refactored_code, "code": refactored_code})
112
- suggestions.append("Review the refactored code and adapt it to your style or project needs.")
113
-
114
- # Review
115
- review_prompt = (
116
- f"As a senior {programming_language} developer, review the refactored code. "
117
- f"Give constructive feedback on strengths, weaknesses, performance, security, and improvements in {explanation_language}:\n\n{refactored_code}"
118
- )
119
- review = groq_call(review_prompt)
120
- timeline.append({"step": "Review", "description": "Code review and suggestions", "output": review, "code": refactored_code})
121
- suggestions.append("Incorporate review feedback for cleaner, robust code.")
122
-
123
- # Error detection & fixes
124
- errors = error_detection_and_fixes(refactored_code, programming_language, skill_level, user_role, explanation_language)
125
- timeline.append({"step": "Error Detection", "description": "Bugs, security, performance suggestions", "output": errors, "code": refactored_code})
126
- suggestions.append("Apply fixes to improve code safety and performance.")
127
-
128
- # Test generation
129
- test_prompt = (
130
- f"Write clear, effective unit tests for this {programming_language} code. "
131
- f"Explain what each test does in {explanation_language}, for a {skill_level} {user_role}:\n\n{refactored_code}"
132
- )
133
- tests = groq_call(test_prompt)
134
- timeline.append({"step": "Test Generation", "description": "Generated unit tests", "output": tests, "code": tests})
135
- suggestions.append("Run generated tests locally to validate changes.")
136
-
137
- return timeline, suggestions
138
-
139
- def get_inline_diff_html(original, modified):
140
  differ = difflib.HtmlDiff(tabsize=4, wrapcolumn=80)
141
- html = differ.make_table(
142
- original.splitlines(), modified.splitlines(),
143
- "Original", "Refactored", context=True, numlines=2
144
- )
145
- return f'<div style="overflow-x:auto; max-height:400px;">{html}</div>'
 
 
 
146
 
147
  def detect_code_type(code, programming_language):
148
  backend_keywords = [
@@ -172,156 +143,258 @@ def detect_code_type(code, programming_language):
172
  return 'frontend'
173
  return 'unknown'
174
 
175
- def code_complexity(code):
176
- lines = code.count('\n') + 1
177
- functions = code.count('def ')
178
- classes = code.count('class ')
179
- comments = code.count('#')
180
- return f"Lines: {lines}, Functions: {functions}, Classes: {classes}, Comments: {comments}"
181
-
182
  def code_matches_language(code: str, language: str) -> bool:
183
- """Strictly check whether code matches key patterns of the selected language."""
184
- code_lower = code.strip().lower()
185
- language = language.lower()
186
-
187
- patterns = {
188
- "python": [
189
- "def ", "class ", "import ", "from ", "try:", "except", "raise", "lambda",
190
- "with ", "yield", "async ", "await", "print(", "self.", "__init__", "__name__",
191
- "if __name__ == '__main__':", "#!", # shebang for executable scripts
192
- ],
193
- "c++": [
194
- "#include", "int main(", "std::", "::", "cout <<", "cin >>", "new ", "delete ",
195
- "try {", "catch(", "template<", "using namespace", "class ", "struct ", "#define",
196
- ],
197
- "java": [
198
- "package ", "import java.", "public class", "private ", "protected ", "public static void main",
199
- "System.out.println", "try {", "catch(", "throw new ", "implements ", "extends ",
200
- "@Override", "interface ", "enum ", "synchronized ", "final ",
201
- ],
202
- "c#": [
203
- "using System", "namespace ", "class ", "interface ", "public static void Main",
204
- "Console.WriteLine", "try {", "catch(", "throw ", "async ", "await ", "get;", "set;",
205
- "List<", "Dictionary<", "[Serializable]", "[Obsolete]",
206
- ],
207
- "javascript": [
208
- "function ", "const ", "let ", "var ", "document.", "window.", "console.log",
209
- "if(", "for(", "while(", "switch(", "try {", "catch(", "export ", "import ", "async ",
210
- "await ", "=>", "this.", "class ", "prototype", "new ", "$(",
211
- ],
212
- "typescript": [
213
- "function ", "const ", "let ", "interface ", "type ", ": string", ": number", ": boolean",
214
- "implements ", "extends ", "enum ", "public ", "private ", "protected ", "readonly ",
215
- "import ", "export ", "console.log", "async ", "await ", "=>", "this.",
216
- ],
217
- "html": [
218
- "<!doctype html", "<html", "<head>", "<body>", "<script", "<style", "<meta ", "<link ",
219
- "<title>", "<div", "<span", "<p>", "<h1>", "<ul>", "<li>", "<form", "<input", "<button",
220
- "<table", "<footer", "<header", "<section", "<article", "<nav", "<img", "<a ", "</html>",
221
- ],
222
- }
223
 
224
- match_patterns = patterns.get(language, [])
225
- match_count = sum(1 for pattern in match_patterns if pattern in code_lower)
226
-
227
- # Require at least one pattern to match for validation to succeed
228
- return match_count >= 1
229
-
230
-
231
- # --- Sidebar ---
232
- st.sidebar.title("🔧 Configuration")
233
- lang = st.sidebar.selectbox("Programming Language", ["Python", "JavaScript", "C++", "Java", "C#", "TypeScript"])
234
- skill = st.sidebar.selectbox("Skill Level", ["Beginner", "Intermediate", "Expert"])
235
- role = st.sidebar.selectbox("Your Role", ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"])
236
- explain_lang = st.sidebar.selectbox("Explanation Language", ["English", "Spanish", "Chinese", "Urdu"])
237
- st.sidebar.markdown("---")
238
- st.sidebar.markdown("<span style='color:#fff;'>Powered by <b>BLACKBOX.AI</b></span>", unsafe_allow_html=True)
239
-
240
- tabs = st.tabs(["🧠 Full AI Workflow", "🔍 Semantic Search"])
241
- # --- Tab 1: Full AI Workflow ---
242
- with tabs[0]:
243
- st.title("🧠 Full AI Workflow")
244
- file_types = {
245
- "Python": ["py"],
246
- "JavaScript": ["js"],
247
- "C++": ["cpp", "h", "hpp"],
248
- "Java": ["java"],
249
- "C#": ["cs"],
250
- "TypeScript": ["ts"],
251
- }
252
 
253
- uploaded_file = st.file_uploader(
254
- f"Upload {', '.join(file_types.get(lang, []))} file(s)",
255
- type=file_types.get(lang, None)
 
 
 
 
 
 
 
 
 
 
 
 
 
256
  )
257
- if uploaded_file:
258
- code_input = uploaded_file.read().decode("utf-8")
 
 
 
 
 
 
 
 
 
 
 
259
  else:
260
- code_input = st.text_area("Your Code", height=300, placeholder="Paste your code here...")
261
-
262
- if code_input:
263
- st.markdown(f"<b>Complexity:</b> {code_complexity(code_input)}", unsafe_allow_html=True)
264
-
265
- if st.button("Run AI Workflow"):
266
- if not code_input.strip():
267
- st.warning("Please paste or upload your code.")
268
- elif not code_matches_language(code_input, lang):
269
- st.error(f"The pasted code doesn’t look like valid {lang} code. Please check your code or select the correct language.")
270
- else:
271
- code_type = detect_code_type(code_input, lang)
272
- if code_type == "data_science" and role != "Data Scientist":
273
- st.error("Data science code detected. Please select 'Data Scientist' role.")
274
- elif code_type == "frontend" and role != "Frontend Developer":
275
- st.error("Frontend code detected. Please select 'Frontend Developer' role.")
276
- elif code_type == "backend" and role != "Backend Developer":
277
- st.error("Backend code detected. Please select 'Backend Developer' role.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278
  else:
279
- with st.spinner("Running agentic workflow..."):
280
- timeline, suggestions = agentic_workflow(code_input, skill, lang, explain_lang, role)
281
-
282
- # Show each step in an expander
283
- for step in timeline:
284
- with st.expander(f" {step['step']} - {step['description']}"):
285
- if step['step'] == "Refactor":
286
- diff_html = get_inline_diff_html(code_input, step['code'])
287
- st.markdown(diff_html, unsafe_allow_html=True)
288
- st.code(step['output'], language=lang.lower())
289
- else:
290
- st.markdown(step['output'])
291
-
292
- st.markdown("#### Agent Suggestions")
293
- for s in suggestions:
294
- st.markdown(f"- {s}")
295
-
296
- # Download buttons after suggestions
297
- st.markdown("---")
298
- st.markdown("### 📥 Download Results")
299
-
300
- report_text = ""
301
- for step in timeline:
302
- report_text += f"## {step['step']}\n{step['description']}\n\n{step['output']}\n\n"
303
-
304
- st.download_button(
305
- label="📄 Download Full Workflow Report",
306
- data=report_text,
307
- file_name="ai_workflow_report.txt",
308
- mime="text/plain",
309
- )
310
-
311
-
312
-
313
- # --- Tab 2: Semantic Search ---
314
- with tabs[1]:
315
- st.title("🔍 Semantic Search")
316
- sem_code = st.text_area("Your Code", height=300, placeholder="Paste your code...")
317
- sem_q = st.text_input("Your Question", placeholder="E.g., What does this function do?")
318
- if st.button("Run Semantic Search"):
319
- if not sem_code.strip() or not sem_q.strip():
320
- st.warning("Code and question required.")
321
  else:
322
- with st.spinner("Running semantic search..."):
323
- answer = semantic_search_improved(sem_code, sem_q, lang, skill, role, explain_lang)
324
- st.markdown("### 📌 Answer")
325
- st.markdown(answer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326
 
327
  st.markdown("---")
 
 
 
1
  import difflib
2
+ import streamlit as st
 
 
3
  from groq import Groq
4
+ import os
5
 
6
+ # --- Set page config FIRST! ---
7
+ st.set_page_config(page_title="AI Code Assistant", layout="wide")
8
+
9
+ # --- Custom CSS for Professional Look ---
10
+ st.markdown("""
11
+ <style>
12
+ @import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap');
13
+ html, body, [class*="css"] {
14
+ font-family: 'Inter', sans-serif;
15
+ background-color: #f7f9fb;
16
+ }
17
+ .stApp {
18
+ background-color: #f7f9fb;
19
+ }
20
+ .stSidebar {
21
+ background-color: #22304a !important;
22
+ }
23
+ .stButton>button {
24
+ background-color: #22304a;
25
+ color: #fff;
26
+ border-radius: 6px;
27
+ border: none;
28
+ font-weight: 600;
29
+ padding: 0.5rem 1.5rem;
30
+ margin-top: 0.5rem;
31
+ margin-bottom: 0.5rem;
32
+ transition: background 0.2s;
33
+ }
34
+ .stButton>button:hover {
35
+ background-color: #1a2333;
36
+ color: #fff;
37
+ }
38
+ .stTextInput>div>div>input, .stTextArea>div>textarea {
39
+ background: #fff;
40
+ border: 1px solid #d1d5db;
41
+ border-radius: 6px;
42
+ color: #22304a;
43
+ font-size: 1rem;
44
+ }
45
+ .stDownloadButton>button {
46
+ background-color: #22304a;
47
+ color: #fff;
48
+ border-radius: 6px;
49
+ border: none;
50
+ font-weight: 600;
51
+ padding: 0.5rem 1.5rem;
52
+ margin-top: 0.5rem;
53
+ margin-bottom: 0.5rem;
54
+ transition: background 0.2s;
55
+ }
56
+ .stDownloadButton>button:hover {
57
+ background-color: #1a2333;
58
+ color: #fff;
59
+ }
60
+ .stExpanderHeader {
61
+ font-weight: 600;
62
+ color: #22304a;
63
+ font-size: 1.1rem;
64
+ }
65
+ .stMarkdown {
66
+ color: #22304a;
67
+ }
68
+ .stAlert {
69
+ border-radius: 6px;
70
+ }
71
+ </style>
72
+ """, unsafe_allow_html=True)
73
 
74
  # --- Groq API Setup ---
75
  GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
76
  if not GROQ_API_KEY:
77
+ st.error("GROQ_API_KEY environment variable not set. Please set it in your Hugging Face Space secrets.")
78
  st.stop()
79
  client = Groq(api_key=GROQ_API_KEY)
80
 
81
+ # --- Blackbox AI Agent Setup ---
82
+ BLACKBOX_API_KEY = os.environ.get("BLACKBOX_API_KEY")
83
+ if not BLACKBOX_API_KEY:
84
+ st.error("BLACKBOX_API_KEY environment variable not set. Please set it in your Hugging Face Space secrets.")
85
+ st.stop()
86
+
87
+ # Chat history management
88
+ if "chat_history" not in st.session_state:
89
+ st.session_state.chat_history = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
+ def groq_api_call(prompt):
92
+ chat_completion = client.chat.completions.create(
93
  messages=[{"role": "user", "content": prompt}],
94
  model="llama3-70b-8192",
95
  )
96
+ return chat_completion.choices[0].message.content
97
+
98
+ def blackbox_ai_call(messages):
99
+ # This is a placeholder for actual Blackbox AI API call using BLACKBOX_API_KEY
100
+ # For demonstration, we simulate a response by echoing last user message
101
+ last_user_message = messages[-1]["content"] if messages else ""
102
+ response = f"Blackbox AI response to: {last_user_message}"
103
+ return response
104
+
105
+ def get_diff_html(original, modified):
106
+ original_lines = original.splitlines()
107
+ modified_lines = modified.splitlines()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
  differ = difflib.HtmlDiff(tabsize=4, wrapcolumn=80)
109
+ return differ.make_table(original_lines, modified_lines, "Original", "Modified", context=True, numlines=2)
110
+
111
+ def code_complexity(code):
112
+ lines = code.count('\n') + 1
113
+ functions = code.count('def ')
114
+ classes = code.count('class ')
115
+ comments = code.count('#')
116
+ return f"Lines: {lines}, Functions: {functions}, Classes: {classes}, Comments: {comments}"
117
 
118
  def detect_code_type(code, programming_language):
119
  backend_keywords = [
 
143
  return 'frontend'
144
  return 'unknown'
145
 
 
 
 
 
 
 
 
146
  def code_matches_language(code: str, language: str) -> bool:
147
+ code = code.strip().lower()
148
+ if language.lower() == "python":
149
+ return "def " in code or "import " in code or ".py" in code
150
+ if language.lower() == "c++":
151
+ return "#include" in code or "int main" in code or ".cpp" in code or "std::" in code
152
+ if language.lower() == "java":
153
+ return "public class" in code or "public static void main" in code or ".java" in code
154
+ if language.lower() == "c#":
155
+ return "using system" in code or "namespace" in code or ".cs" in code
156
+ if language.lower() == "javascript":
157
+ return "function " in code or "const " in code or "let " in code or "var " in code or ".js" in code
158
+ if language.lower() == "typescript":
159
+ return "function " in code or "const " in code or "let " in code or "var " in code or ": string" in code or ".ts" in code
160
+ if language.lower() == "html":
161
+ return "<html" in code or "<!doctype html" in code
162
+ return True # fallback
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163
 
164
+ def agentic_workflow(code, skill_level, programming_language, explanation_language, user_role):
165
+ timeline = []
166
+ suggestions = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
 
168
+ explain_prompt = (
169
+ f"Explain the following {programming_language} code line by line or function by function "
170
+ f"for a {skill_level.lower()} {user_role} in {explanation_language}:\n{code}"
171
+ )
172
+ explanation = groq_api_call(explain_prompt)
173
+ timeline.append({
174
+ "step": "Explain",
175
+ "description": "Step-by-step explanation of your code.",
176
+ "output": explanation,
177
+ "code": code
178
+ })
179
+ suggestions.append("Refactor your code for better readability and performance.")
180
+
181
+ refactor_prompt = (
182
+ f"Refactor the following {programming_language} code for better readability, performance, and structure. "
183
+ f"Explain what changes you made and why, for a {skill_level.lower()} {user_role} in {explanation_language}:\n{code}"
184
  )
185
+ refactor_response = groq_api_call(refactor_prompt)
186
+ if "```" in refactor_response:
187
+ parts = refactor_response.split("```")
188
+ refactor_explanation = parts[0].strip()
189
+ refactored_code = ""
190
+ for i in range(1, len(parts)):
191
+ if parts[i].strip().startswith(programming_language.lower()):
192
+ refactored_code = parts[i].strip().split('\n', 1)[1] if '\n' in parts[i] else ""
193
+ break
194
+ elif i == 1:
195
+ refactored_code = parts[i].strip().split('\n', 1)[1] if '\n' in parts[i] else ""
196
+ if not refactored_code:
197
+ refactored_code = refactor_response.strip()
198
  else:
199
+ refactor_explanation = "Refactored code below."
200
+ refactored_code = refactor_response.strip()
201
+ timeline.append({
202
+ "step": "Refactor",
203
+ "description": refactor_explanation,
204
+ "output": refactored_code,
205
+ "code": refactored_code
206
+ })
207
+ suggestions.append("Review the refactored code for best practices and improvements.")
208
+
209
+ review_prompt = (
210
+ f"Provide a code review for the following {programming_language} code. "
211
+ f"Include feedback on best practices, code smells, optimization, and security issues, for a {skill_level.lower()} {user_role} in {explanation_language}:\n{refactored_code}"
212
+ )
213
+ review_feedback = groq_api_call(review_prompt)
214
+ timeline.append({
215
+ "step": "Review",
216
+ "description": "AI code review and feedback.",
217
+ "output": review_feedback,
218
+ "code": refactored_code
219
+ })
220
+ suggestions.append("Generate unit tests for your code.")
221
+
222
+ test_prompt = (
223
+ f"Write unit tests for the following {programming_language} code. "
224
+ f"Use pytest style and cover all functions. For a {skill_level.lower()} {user_role} in {explanation_language}:\n{refactored_code}"
225
+ )
226
+ test_code = groq_api_call(test_prompt)
227
+ timeline.append({
228
+ "step": "Test Generation",
229
+ "description": "AI-generated unit tests for your code.",
230
+ "output": test_code,
231
+ "code": test_code
232
+ })
233
+ suggestions.append("Run the generated tests in your local environment.")
234
+
235
+ return timeline, suggestions
236
+
237
+ st.markdown(
238
+ "<h2 style='text-align: center; color: #22304a; font-weight: 600; margin-bottom: 0.5em;'>AI Code Assistant</h2>",
239
+ unsafe_allow_html=True
240
+ )
241
+
242
+ with st.sidebar:
243
+ st.title("Settings")
244
+ programming_language = st.selectbox(
245
+ "Programming Language",
246
+ ["Python", "C++", "Java", "C#", "JavaScript", "TypeScript", "HTML"]
247
+ )
248
+ explanation_language = st.selectbox(
249
+ "Explanation Language",
250
+ ["English", "Urdu", "Chinese", "Spanish"]
251
+ )
252
+ skill_level = st.selectbox("Skill Level", ["Beginner", "Intermediate", "Expert"])
253
+ user_role = st.selectbox(
254
+ "Choose Role",
255
+ ["Data Scientist", "Backend Developer", "Frontend Developer", "Student"]
256
+ )
257
+ st.markdown("---")
258
+ st.markdown("<span style='color:#fff;'>Powered by <b>BLACKBOX.AI</b></span>", unsafe_allow_html=True)
259
+
260
+ if "code" not in st.session_state:
261
+ st.session_state.code = ""
262
+ if "timeline" not in st.session_state:
263
+ st.session_state.timeline = []
264
+ if "suggestions" not in st.session_state:
265
+ st.session_state.suggestions = []
266
+ if "chat_history" not in st.session_state:
267
+ st.session_state.chat_history = []
268
+
269
+ col1, col2 = st.columns([2, 3], gap="large")
270
+
271
+ with col1:
272
+ st.subheader(f"{programming_language} Code")
273
+ uploaded_file = st.file_uploader(f"Upload .{programming_language.lower()} file", type=[programming_language.lower()])
274
+ code_input = st.text_area(
275
+ "Paste or edit your code here:",
276
+ height=300,
277
+ value=st.session_state.code,
278
+ key="main_code_input"
279
+ )
280
+ if uploaded_file is not None:
281
+ code = uploaded_file.read().decode("utf-8")
282
+ st.session_state.code = code
283
+ st.success("File uploaded successfully.")
284
+ elif code_input:
285
+ st.session_state.code = code_input
286
+
287
+ st.markdown(f"<b>Complexity:</b> {code_complexity(st.session_state.code)}", unsafe_allow_html=True)
288
+
289
+ st.markdown("---")
290
+ st.markdown("#### Agent Suggestions")
291
+ for suggestion in st.session_state.suggestions[-3:]:
292
+ st.markdown(f"- {suggestion}")
293
+
294
+ st.markdown("---")
295
+ st.markdown("#### Download Full Report")
296
+ if st.session_state.timeline:
297
+ report = ""
298
+ for step in st.session_state.timeline:
299
+ report += f"## {step['step']}\n{step['description']}\n\n{step['output']}\n\n"
300
+ st.download_button("Download Report", report, file_name="ai_code_assistant_report.txt")
301
+
302
+ with col2:
303
+ st.subheader("Agentic Workflow")
304
+ if st.button("Run Full AI Agent Workflow"):
305
+ if not st.session_state.code.strip():
306
+ st.warning("Please enter or upload code first.")
307
+ else:
308
+ # Language check
309
+ if not code_matches_language(st.session_state.code, programming_language):
310
+ st.error(f"It looks like you provided code in a different language. Please provide {programming_language} code.")
311
  else:
312
+ code_type = detect_code_type(st.session_state.code, programming_language)
313
+ # Role/code type enforcement
314
+ if code_type == "data_science" and user_role != "Data Scientist":
315
+ st.error("It looks like you provided data science code. Please select 'Data Scientist' as your role.")
316
+ elif code_type == "frontend" and user_role != "Frontend Developer":
317
+ st.error("It looks like you provided frontend code. Please select 'Frontend Developer' as your role.")
318
+ elif code_type == "backend" and user_role != "Backend Developer":
319
+ st.error("It looks like you provided backend code. Please select 'Backend Developer' as your role.")
320
+ elif code_type == "unknown":
321
+ st.warning("Could not determine the code type. Please make sure your code is complete and clear.")
322
+ else:
323
+ with st.spinner("AI Agent is working through all steps..."):
324
+ timeline, suggestions = agentic_workflow(
325
+ st.session_state.code,
326
+ skill_level,
327
+ programming_language,
328
+ explanation_language,
329
+ user_role
330
+ )
331
+ st.session_state.timeline = timeline
332
+ st.session_state.suggestions = suggestions
333
+ st.success("Agentic workflow complete. See timeline below.")
334
+
335
+ # Chatbox with history using Blackbox AI agent
336
+ st.subheader("Chat with Blackbox AI Agent")
337
+ user_input = st.text_input("Enter your message:", key="chat_input")
338
+ if user_input:
339
+ st.session_state.chat_history.append({"role": "user", "content": user_input})
340
+ response = blackbox_ai_call(st.session_state.chat_history)
341
+ st.session_state.chat_history.append({"role": "assistant", "content": response})
342
+
343
+ for chat in st.session_state.chat_history:
344
+ if chat["role"] == "user":
345
+ st.markdown(f"**You:** {chat['content']}")
 
 
 
 
 
 
 
 
346
  else:
347
+ st.markdown(f"**Blackbox AI:** {chat['content']}")
348
+
349
+ # --- Semantic Search with history ---
350
+ st.markdown("---")
351
+ st.subheader("Semantic Search with Contextual History")
352
+
353
+ if "semantic_search_history" not in st.session_state:
354
+ st.session_state.semantic_search_history = []
355
+
356
+ sem_code = st.text_area("Your Code for Semantic Search", height=300, placeholder="Paste your code here...")
357
+ sem_question = st.text_input("Ask a question about your code:")
358
+
359
+ if st.button("Ask Semantic Search"):
360
+ if not sem_code.strip() or not sem_question.strip():
361
+ st.warning("Please provide both code and a question.")
362
+ else:
363
+ # Append current question to history
364
+ st.session_state.semantic_search_history.append({"question": sem_question, "answer": None})
365
+
366
+ # Build context from history
367
+ context = ""
368
+ for entry in st.session_state.semantic_search_history:
369
+ if entry["answer"]:
370
+ context += f"Q: {entry['question']}\nA: {entry['answer']}\n\n"
371
+ else:
372
+ context += f"Q: {entry['question']}\n"
373
+
374
+ # Combine context with current code and question
375
+ prompt = (
376
+ f"You are a helpful {programming_language} expert assisting a user.\n"
377
+ f"Here is the code:\n{sem_code}\n\n"
378
+ f"Conversation history:\n{context}\n"
379
+ f"Please answer the latest question."
380
+ )
381
+
382
+ # Call Blackbox AI agent with accumulated context
383
+ # For demonstration, we use semantic_search_improved as placeholder
384
+ answer = semantic_search_improved(sem_code, sem_question, programming_language, skill_level, user_role, explanation_language)
385
+
386
+ # Update the last answer in history
387
+ st.session_state.semantic_search_history[-1]["answer"] = answer
388
+
389
+ st.markdown("### Answer")
390
+ st.markdown(answer)
391
+
392
+ if st.session_state.semantic_search_history:
393
+ st.markdown("### Semantic Search History")
394
+ for entry in st.session_state.semantic_search_history:
395
+ st.markdown(f"**Q:** {entry['question']}")
396
+ if entry["answer"]:
397
+ st.markdown(f"**A:** {entry['answer']}")
398
 
399
  st.markdown("---")
400
+ st.markdown('<div style="text-align: center; color: #22304a; font-size: 1rem; margin-top: 2em;">Powered by <b>BLACKBOX.AI</b></div>', unsafe_allow_html=True)