import streamlit as st import difflib import os import re import hashlib from groq import Groq # --- Page config --- st.set_page_config(page_title="πŸš€ AI Assistant with Workflow + Semantic Search", layout="wide") # --- Groq API Setup --- GROQ_API_KEY = os.environ.get("GROQ_API_KEY") if not GROQ_API_KEY: st.error("❌ Please set your GROQ_API_KEY environment variable.") st.stop() client = Groq(api_key=GROQ_API_KEY) # --- Cache for embeddings --- embedding_cache = {} def get_embedding(text): key = hashlib.sha256(text.encode()).hexdigest() if key in embedding_cache: return embedding_cache[key] embedding = [ord(c) % 100 / 100 for c in text[:512]] embedding_cache[key] = embedding return embedding def cosine_similarity(vec1, vec2): dot = sum(a*b for a,b in zip(vec1, vec2)) norm1 = sum(a*a for a in vec1) ** 0.5 norm2 = sum(b*b for b in vec2) ** 0.5 return dot / (norm1 * norm2 + 1e-8) def split_code_into_chunks(code, lang): if lang.lower() == "python": pattern = r'(def\s+\w+\(.*?\):|class\s+\w+\(?.*?\)?:)' splits = re.split(pattern, code) chunks = [] for i in range(1, len(splits), 2): header = splits[i] body = splits[i+1] if (i+1) < len(splits) else "" chunks.append(header + body) return chunks if chunks else [code] else: return [code] def groq_call(prompt): resp = client.chat.completions.create( messages=[{"role": "user", "content": prompt}], model="llama3-70b-8192", ) return resp.choices[0].message.content def semantic_search_improved(code, question, lang, skill, role, explain_lang): chunks = split_code_into_chunks(code, lang) question_emb = get_embedding(question) scored_chunks = [] for chunk in chunks: emb = get_embedding(chunk) score = cosine_similarity(question_emb, emb) scored_chunks.append((score, chunk)) scored_chunks.sort(key=lambda x: x[0], reverse=True) top_chunks = [c for _, c in scored_chunks[:3]] combined_code = "\n\n".join(top_chunks) prompt = ( f"You are a friendly and insightful {lang} expert helping a {skill} {role}.\n" f"Based on these relevant code snippets:\n{combined_code}\n" f"Answer this question in {explain_lang}:\n{question}\n" f"Explain which parts handle the question and how to modify them if needed." ) return groq_call(prompt) def error_detection_and_fixes(refactored_code, lang, skill, role, explain_lang): prompt = ( f"You are a senior {lang} developer. Analyze this code for bugs, security flaws, " f"and performance issues. Suggest fixes with explanations in {explain_lang}:\n\n{refactored_code}" ) return groq_call(prompt) def agentic_workflow(code, skill_level, programming_language, explanation_language, user_role): timeline = [] suggestions = [] # Explanation explain_prompt = ( f"You are a friendly and insightful {programming_language} expert helping a {skill_level} {user_role}. " f"Explain this code in {explanation_language} with clear examples, analogies, and why each part matters:\n\n{code}" ) explanation = groq_call(explain_prompt) timeline.append({"step": "Explain", "description": "Detailed explanation", "output": explanation, "code": code}) suggestions.append("Consider refactoring your code to improve readability and performance.") # Refactor refactor_prompt = ( f"Refactor this {programming_language} code. Explain the changes like a mentor helping a {skill_level} {user_role}. " f"Include best practices and improvements:\n\n{code}" ) refactor_response = groq_call(refactor_prompt) if "```" in refactor_response: parts = refactor_response.split("```") refactored_code = "" for part in parts: if part.strip().startswith(programming_language.lower()): refactored_code = part.strip().split('\n', 1)[1] if '\n' in part else "" break if not refactored_code: refactored_code = refactor_response else: refactored_code = refactor_response timeline.append({"step": "Refactor", "description": "Refactored code with improvements", "output": refactored_code, "code": refactored_code}) suggestions.append("Review the refactored code and adapt it to your style or project needs.") # Review review_prompt = ( f"As a senior {programming_language} developer, review the refactored code. " f"Give constructive feedback on strengths, weaknesses, performance, security, and improvements in {explanation_language}:\n\n{refactored_code}" ) review = groq_call(review_prompt) timeline.append({"step": "Review", "description": "Code review and suggestions", "output": review, "code": refactored_code}) suggestions.append("Incorporate review feedback for cleaner, robust code.") # Error detection & fixes errors = error_detection_and_fixes(refactored_code, programming_language, skill_level, user_role, explanation_language) timeline.append({"step": "Error Detection", "description": "Bugs, security, performance suggestions", "output": errors, "code": refactored_code}) suggestions.append("Apply fixes to improve code safety and performance.") # Test generation test_prompt = ( f"Write clear, effective unit tests for this {programming_language} code. " f"Explain what each test does in {explanation_language}, for a {skill_level} {user_role}:\n\n{refactored_code}" ) tests = groq_call(test_prompt) timeline.append({"step": "Test Generation", "description": "Generated unit tests", "output": tests, "code": tests}) suggestions.append("Run generated tests locally to validate changes.") return timeline, suggestions def get_inline_diff_html(original, modified): differ = difflib.HtmlDiff(tabsize=4, wrapcolumn=80) html = differ.make_table( original.splitlines(), modified.splitlines(), "Original", "Refactored", context=True, numlines=2 ) return f'
{html}
' def detect_code_type(code, programming_language): backend_keywords = [ 'flask', 'django', 'express', 'fastapi', 'spring', 'controller', 'api', 'server', 'database', 'sql', 'mongoose' ] frontend_keywords = [ 'react', 'vue', 'angular', 'component', 'html', 'css', 'document.getelementbyid', 'window.', 'render', 'jsx', ' bool: """Strictly check whether code matches key patterns of the selected language.""" code_lower = code.strip().lower() language = language.lower() patterns = { "python": [ "def ", "class ", "import ", "from ", "try:", "except", "raise", "lambda", "with ", "yield", "async ", "await", "print(", "self.", "__init__", "__name__", "if __name__ == '__main__':", "#!", # shebang for executable scripts ], "c++": [ "#include", "int main(", "std::", "::", "cout <<", "cin >>", "new ", "delete ", "try {", "catch(", "template<", "using namespace", "class ", "struct ", "#define", ], "java": [ "package ", "import java.", "public class", "private ", "protected ", "public static void main", "System.out.println", "try {", "catch(", "throw new ", "implements ", "extends ", "@Override", "interface ", "enum ", "synchronized ", "final ", ], "c#": [ "using System", "namespace ", "class ", "interface ", "public static void Main", "Console.WriteLine", "try {", "catch(", "throw ", "async ", "await ", "get;", "set;", "List<", "Dictionary<", "[Serializable]", "[Obsolete]", ], "javascript": [ "function ", "const ", "let ", "var ", "document.", "window.", "console.log", "if(", "for(", "while(", "switch(", "try {", "catch(", "export ", "import ", "async ", "await ", "=>", "this.", "class ", "prototype", "new ", "$(", ], "typescript": [ "function ", "const ", "let ", "interface ", "type ", ": string", ": number", ": boolean", "implements ", "extends ", "enum ", "public ", "private ", "protected ", "readonly ", "import ", "export ", "console.log", "async ", "await ", "=>", "this.", ], "html": [ "", "", "", "", "

", "
    ", "
  • ", "", ], } match_patterns = patterns.get(language, []) match_count = sum(1 for pattern in match_patterns if pattern in code_lower) # Require at least one pattern to match for validation to succeed return match_count >= 1 # --- Sidebar --- st.sidebar.title("πŸ”§ Configuration") lang = st.sidebar.selectbox("Programming Language", ["Python", "JavaScript", "C++", "Java", "C#", "TypeScript"]) skill = st.sidebar.selectbox("Skill Level", ["Beginner", "Intermediate", "Expert"]) role = st.sidebar.selectbox("Your Role", ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"]) explain_lang = st.sidebar.selectbox("Explanation Language", ["English", "Spanish", "Chinese", "Urdu"]) st.sidebar.markdown("---") st.sidebar.markdown("Powered by BLACKBOX.AI", unsafe_allow_html=True) tabs = st.tabs(["🧠 Full AI Workflow", "πŸ” Semantic Search"]) # --- Tab 1: Full AI Workflow --- with tabs[0]: st.title("🧠 Full AI Workflow") file_types = { "Python": ["py"], "JavaScript": ["js"], "C++": ["cpp", "h", "hpp"], "Java": ["java"], "C#": ["cs"], "TypeScript": ["ts"], } uploaded_file = st.file_uploader( f"Upload {', '.join(file_types.get(lang, []))} file(s)", type=file_types.get(lang, None) ) if uploaded_file: code_input = uploaded_file.read().decode("utf-8") else: code_input = st.text_area("Your Code", height=300, placeholder="Paste your code here...") if code_input: st.markdown(f"Complexity: {code_complexity(code_input)}", unsafe_allow_html=True) if st.button("Run AI Workflow"): if not code_input.strip(): st.warning("Please paste or upload your code.") elif not code_matches_language(code_input, lang): st.error(f"The pasted code doesn’t look like valid {lang} code. Please check your code or select the correct language.") else: code_type = detect_code_type(code_input, lang) if code_type == "data_science" and role != "Data Scientist": st.error("Data science code detected. Please select 'Data Scientist' role.") elif code_type == "frontend" and role != "Frontend Developer": st.error("Frontend code detected. Please select 'Frontend Developer' role.") elif code_type == "backend" and role != "Backend Developer": st.error("Backend code detected. Please select 'Backend Developer' role.") else: with st.spinner("Running agentic workflow..."): timeline, suggestions = agentic_workflow(code_input, skill, lang, explain_lang, role) # Show each step in an expander for step in timeline: with st.expander(f"βœ… {step['step']} - {step['description']}"): if step['step'] == "Refactor": diff_html = get_inline_diff_html(code_input, step['code']) st.markdown(diff_html, unsafe_allow_html=True) st.code(step['output'], language=lang.lower()) else: st.markdown(step['output']) st.markdown("#### Agent Suggestions") for s in suggestions: st.markdown(f"- {s}") # Download buttons after suggestions st.markdown("---") st.markdown("### πŸ“₯ Download Results") report_text = "" for step in timeline: report_text += f"## {step['step']}\n{step['description']}\n\n{step['output']}\n\n" st.download_button( label="πŸ“„ Download Full Workflow Report", data=report_text, file_name="ai_workflow_report.txt", mime="text/plain", ) # --- Tab 2: Semantic Search --- with tabs[1]: st.title("πŸ” Semantic Search") sem_code = st.text_area("Your Code", height=300, placeholder="Paste your code...") sem_q = st.text_input("Your Question", placeholder="E.g., What does this function do?") if st.button("Run Semantic Search"): if not sem_code.strip() or not sem_q.strip(): st.warning("Code and question required.") else: with st.spinner("Running semantic search..."): answer = semantic_search_improved(sem_code, sem_q, lang, skill, role, explain_lang) st.markdown("### πŸ“Œ Answer") st.markdown(answer) st.markdown("---")