import streamlit as st import difflib import requests import datetime import streamlit.components.v1 as components # --- CONFIG --- GROQ_API_KEY = st.secrets.get('GROQ_API_KEY', 'YOUR_GROQ_API_KEY') BLACKBOX_API_KEY = st.secrets.get('BLACKBOX_API_KEY', 'YOUR_BLACKBOX_API_KEY') PROGRAMMING_LANGUAGES = ["Python", "JavaScript", "TypeScript", "Java", "C++", "C#"] SKILL_LEVELS = ["Beginner", "Intermediate", "Expert"] USER_ROLES = ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"] EXPLANATION_LANGUAGES = ["English", "Spanish", "Chinese", "Urdu"] EXAMPLE_QUESTIONS = [ "What does this function do?", "How can I optimize this code?", "What are the potential bugs in this code?", "How does this algorithm work?", "What design patterns are used here?", "How can I make this code more readable?" ] # --- API STUBS --- def call_groq_api(prompt, model="llama3-70b-8192"): headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"} data = {"model": model, "messages": [{"role": "user", "content": prompt}]} response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=data, headers=headers) if response.status_code == 200: return response.json()['choices'][0]['message']['content'] else: return f"[Groq API Error] {response.text}" def call_blackbox_agent(messages): url = "https://api.code.blackbox.ai/v1/chat/completions" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {BLACKBOX_API_KEY}" } data = { "model": "code-chat", "messages": messages } response = requests.post(url, headers=headers, json=data) if response.status_code == 200: return response.json()["choices"][0]["message"]["content"] else: return call_groq_api(messages[-1]["content"]) # --- UTILS --- def code_matches_language(code, language): # Simple heuristic, can be improved if language.lower() in code.lower(): return True return True # For demo, always True def calculate_code_complexity(code): # Dummy complexity metric lines = code.count('\n') + 1 return f"{lines} lines" def get_inline_diff(original, modified): diff = difflib.unified_diff( original.splitlines(), modified.splitlines(), lineterm='', fromfile='Original', tofile='Refactored' ) return '\n'.join(diff) def is_coding_question(question): messages = [ {"role": "system", "content": "You are a helpful coding assistant."}, {"role": "user", "content": f"Is the following question about programming or code? Answer only 'yes' or 'no'. Question: {question}"} ] try: response = call_blackbox_agent(messages) return 'yes' in response.lower() except Exception: return False # --- STREAMLIT APP --- st.set_page_config(page_title="AI Workflow App", layout="wide") st.title("AI Assistant with Workflow (Streamlit Edition)") # Navigation page = st.sidebar.radio("Navigate", ["Home", "AI Workflow", "Semantic Search"]) if page == "Home": st.header("Welcome to the AI Assistant!") st.markdown(""" - **Full AI Workflow:** Complete code analysis pipeline with explanation, refactoring, review, and testing (powered by Groq/Blackbox) - **Semantic Search:** Ask natural language questions about your code and get intelligent answers """) st.info("Select a feature from the sidebar to get started.") elif page == "AI Workflow": st.header("Full AI Workflow") code_input = st.text_area("Paste your code here", height=200) uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"]) if uploaded_file: code_input = uploaded_file.read().decode("utf-8") st.text_area("File content", code_input, height=200, key="file_content") col1, col2, col3, col4 = st.columns(4) with col1: programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES) with col2: skill_level = st.selectbox("Skill Level", SKILL_LEVELS) with col3: user_role = st.selectbox("Your Role", USER_ROLES) with col4: explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES) if code_input: st.caption(f"Complexity: {calculate_code_complexity(code_input)}") if st.button("Run Workflow", type="primary"): if not code_input.strip(): st.error("Please paste or upload your code.") elif not code_matches_language(code_input, programming_language): st.error(f"Language mismatch. Please check your code and language selection.") else: with st.spinner("Running AI Workflow..."): steps = [ ("Explain", call_groq_api(f"Explain this {programming_language} code for a {skill_level} {user_role} in {explanation_language}:\n{code_input}")), ("Refactor", call_blackbox_agent([ {"role": "system", "content": "You are a helpful coding assistant."}, {"role": "user", "content": f"Refactor this {programming_language} code: {code_input}"} ])), ("Review", call_groq_api(f"Review this {programming_language} code for errors and improvements: {code_input}")), ("ErrorDetection", call_groq_api(f"Find bugs in this {programming_language} code: {code_input}")), ("TestGeneration", call_groq_api(f"Generate tests for this {programming_language} code: {code_input}")), ] timeline = [] for step, output in steps: timeline.append({"step": step, "output": output}) st.success("Workflow complete!") for t in timeline: st.subheader(t["step"]) st.write(t["output"]) st.subheader("Code Diff (Original vs Refactored)") refactored_code = steps[1][1] st.code(get_inline_diff(code_input, refactored_code), language=programming_language.lower()) report = f"AI Workflow Report\nGenerated on: {datetime.datetime.now()}\nLanguage: {programming_language}\nSkill Level: {skill_level}\nRole: {user_role}\n\n" for t in timeline: report += f"## {t['step']}\n{t['output']}\n\n---\n\n" st.download_button("Download Report", report, file_name="ai_workflow_report.txt") elif page == "Semantic Search": st.header("Semantic Search") code_input = st.text_area("Paste your code here", height=200, key="sem_code") uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="sem_file") if uploaded_file: code_input = uploaded_file.read().decode("utf-8") st.text_area("File content", code_input, height=200, key="sem_file_content") col1, col2, col3, col4 = st.columns(4) with col1: programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="sem_lang") with col2: skill_level = st.selectbox("Skill Level", SKILL_LEVELS, key="sem_skill") with col3: user_role = st.selectbox("Your Role", USER_ROLES, key="sem_role") with col4: explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES, key="sem_expl") st.caption("Example questions:") st.write(", ".join(EXAMPLE_QUESTIONS)) # --- Voice input widget --- if 'voice_question' not in st.session_state: st.session_state['voice_question'] = '' if 'run_semantic_search' not in st.session_state: st.session_state['run_semantic_search'] = False voice_input = components.html(''' ''', height=60) # Use the return value from components.html as the transcript if voice_input and isinstance(voice_input, str) and voice_input.strip(): if is_coding_question(voice_input): st.session_state['voice_question'] = voice_input st.session_state['run_semantic_search'] = True st.success(f"Question recognized: {voice_input}") else: st.warning("Please ask a relevant question.") # --- Main question input --- question = st.text_input("Ask a question about your code", value=st.session_state.get('voice_question', ''), key="sem_question") # Run Semantic Search button run_btn = st.button("Run Semantic Search") run_search = run_btn or st.session_state.get('run_semantic_search', False) if run_search: st.session_state['run_semantic_search'] = False # reset trigger if not code_input.strip() or not question.strip(): st.error("Both code and question are required.") elif not code_matches_language(code_input, programming_language): st.error(f"Language mismatch. Please check your code and language selection.") else: with st.spinner("Running Semantic Search..."): answer = call_groq_api(f"{question}\n\nCode:\n{code_input}") st.success("Answer:") st.write(answer)