import streamlit as st import difflib import re import requests import datetime import streamlit.components.v1 as components # --- CONFIG --- # Place your API keys here GROQ_API_KEY = st.secrets.get('GROQ_API_KEY', 'YOUR_GROQ_API_KEY') BLACKBOX_API_KEY = st.secrets.get('BLACKBOX_API_KEY', 'YOUR_BLACKBOX_API_KEY') PROGRAMMING_LANGUAGES = ["Python", "JavaScript", "TypeScript", "Java", "C++", "C#"] SKILL_LEVELS = ["Beginner", "Intermediate", "Expert"] USER_ROLES = ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"] EXPLANATION_LANGUAGES = ["English", "Spanish", "Chinese", "Urdu"] EXAMPLE_QUESTIONS = [ "What does this function do?", "How can I optimize this code?", "What are the potential bugs in this code?", "How does this algorithm work?", "What design patterns are used here?", "How can I make this code more readable?" ] LANGUAGE_KEYWORDS = { "Python": ["def ", "import ", "self", "print(", "lambda", "None"], "JavaScript": ["function ", "console.log", "var ", "let ", "const ", "=>"], "TypeScript": ["interface ", "type ", ": string", ": number", "export ", "import "], "Java": ["public class", "System.out.println", "void main", "import java.", "new "], "C++": ["#include", "std::", "cout <<", "cin >>", "int main(", "using namespace"], "C#": ["using System;", "namespace ", "public class", "Console.WriteLine", "static void Main"] } # --- API STUBS --- def call_groq_api(prompt, model="llama3-70b-8192"): # Replace with actual Groq API call headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"} data = {"model": model, "messages": [{"role": "user", "content": prompt}]} response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=data, headers=headers) if response.status_code == 200: return response.json()['choices'][0]['message']['content'] else: return f"[Groq API Error] {response.text}" def call_blackbox_agent(messages): url = "https://api.blackbox.ai/v1/chat/completions" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {BLACKBOX_API_KEY}" } data = { "model": "code-chat", "messages": messages } response = requests.post(url, headers=headers, json=data) if response.status_code == 200: return response.json()["choices"][0]["message"]["content"] else: return call_groq_api(messages[-1]["content"]) # --- UTILS --- def code_matches_language(code, language): keywords = LANGUAGE_KEYWORDS.get(language, []) return any(kw in code for kw in keywords) def calculate_code_complexity(code): # Dummy complexity metric lines = code.count('\n') + 1 return f"{lines} lines" def get_inline_diff(original, modified): diff = difflib.unified_diff( original.splitlines(), modified.splitlines(), lineterm='', fromfile='Original', tofile='Refactored' ) return '\n'.join(diff) def is_coding_question(question): """ Uses Blackbox AI agent to check if the question is about programming/code. Returns True if yes, False otherwise. """ messages = [ {"role": "system", "content": "You are a helpful coding assistant."}, {"role": "user", "content": f"Is the following question about programming or code? Answer only 'yes' or 'no'. Question: {question}"} ] try: response = call_blackbox_agent(messages) return 'yes' in response.lower() except Exception: return False def get_explanation_prompt(code, programming_language, skill_level, user_role, explanation_language, question=None): lang_instruction = f" Respond in {explanation_language}." if explanation_language != "English" else "" if question: return f"{question}\n\nCode:\n{code}\n{lang_instruction}" return ( f"Explain this {programming_language} code for a {skill_level} {user_role}.{lang_instruction}\n{code}" ) # --- SESSION STATE FOR CHAT HISTORY --- if "workflow_history" not in st.session_state: st.session_state.workflow_history = [] if "semantic_history" not in st.session_state: st.session_state.semantic_history = [] if "comment_history" not in st.session_state: st.session_state.comment_history = [] # --- STREAMLIT APP --- st.set_page_config(page_title="Code Workflows", layout="wide") st.title("Code Genie") # Navigation page = st.sidebar.radio("Navigate", ["Home", "Code Workflows", "Semantic Search", "Code Comment Generator"]) if page == "Home": st.header("Welcome to the Code Genie!") st.markdown(""" - **Full Code Workflow:** Complete code analysis pipeline with explanation, refactoring, review, and testing (powered by Groq/Blackbox) - **Semantic Search:** Ask natural language questions about your code and get intelligent answers - **Code Comment Generator:** Helps you add helpful comments to your code for better readability """) st.info("Select a feature from the sidebar to get started.") elif page == "Code Workflows": st.header("Full Code Workflows") code_input = st.text_area("Paste your code here", height=200) uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"]) if uploaded_file: code_input = uploaded_file.read().decode("utf-8") st.text_area("File content", code_input, height=200, key="file_content") col1, col2, col3, col4 = st.columns(4) with col1: programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES) with col2: skill_level = st.selectbox("Skill Level", SKILL_LEVELS) with col3: user_role = st.selectbox("Your Role", USER_ROLES) with col4: explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES) if code_input: st.caption(f"Complexity: {calculate_code_complexity(code_input)}") if st.button("Run Workflow", type="primary"): if not code_input.strip(): st.error("Please paste or upload your code.") elif not code_matches_language(code_input, programming_language): st.error(f"Language mismatch. Please check your code and language selection.") else: with st.spinner("Running AI Workflow..."): lang_instruction = f" Respond in {explanation_language}." if explanation_language != "English" else "" role_level_instruction = f" The user is a {skill_level} {user_role}." steps = [ ("Explain", call_groq_api(get_explanation_prompt(code_input, programming_language, skill_level, user_role, explanation_language))), ("Refactor", call_blackbox_agent([ {"role": "system", "content": "You are a helpful coding assistant."}, {"role": "user", "content": f"Refactor this {programming_language} code for a {skill_level} {user_role}: {code_input}{lang_instruction}"} ])), ("Review", call_groq_api(f"Review this {programming_language} code for errors and improvements for a {skill_level} {user_role}: {code_input}{lang_instruction}")), ("ErrorDetection", call_groq_api(f"Find bugs in this {programming_language} code for a {skill_level} {user_role}: {code_input}{lang_instruction}")), ("TestGeneration", call_groq_api(f"Generate tests for this {programming_language} code for a {skill_level} {user_role}: {code_input}{lang_instruction}")), ] timeline = [] for step, output in steps: timeline.append({"step": step, "output": output}) st.success("Workflow complete!") for t in timeline: st.subheader(t["step"]) st.write(t["output"]) # Show code diff (dummy for now) st.subheader("Code Diff (Original vs Refactored)") refactored_code = steps[1][1] # Blackbox agent output st.code(get_inline_diff(code_input, refactored_code), language=programming_language.lower()) # Download report report = f"AI Workflow Report\nGenerated on: {datetime.datetime.now()}\nLanguage: {programming_language}\nSkill Level: {skill_level}\nRole: {user_role}\n\n" for t in timeline: report += f"## {t['step']}\n{t['output']}\n\n---\n\n" st.download_button("Download Report", report, file_name="ai_workflow_report.txt") # Save to chat history st.session_state.workflow_history.append({ "timestamp": str(datetime.datetime.now()), "user_code": code_input, "params": { "language": programming_language, "skill": skill_level, "role": user_role, "explanation_language": explanation_language }, "timeline": timeline, "refactored_code": refactored_code }) # Show chat history for workflows st.markdown("### Workflow Chat History") if st.button("Clear Workflow History"): st.session_state.workflow_history = [] for entry in reversed(st.session_state.workflow_history): st.markdown(f"**[{entry['timestamp']}]**") st.code(entry["user_code"], language=entry["params"]["language"].lower()) for t in entry["timeline"]: st.subheader(t["step"]) st.write(t["output"]) st.subheader("Code Diff (Original vs Refactored)") st.code(get_inline_diff(entry["user_code"], entry["refactored_code"]), language=entry["params"]["language"].lower()) st.markdown("---") elif page == "Semantic Search": st.header("Semantic Search") code_input = st.text_area("Paste your code here", height=200, key="sem_code") uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="sem_file") if uploaded_file: code_input = uploaded_file.read().decode("utf-8") st.text_area("File content", code_input, height=200, key="sem_file_content") col1, col2, col3, col4 = st.columns(4) with col1: programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="sem_lang") with col2: skill_level = st.selectbox("Skill Level", SKILL_LEVELS, key="sem_skill") with col3: user_role = st.selectbox("Your Role", USER_ROLES, key="sem_role") with col4: explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES, key="sem_expl") st.caption("Example questions:") st.write(", ".join(EXAMPLE_QUESTIONS)) # Only text input for question question = st.text_input("Ask a question about your code", key="sem_question") # Run Semantic Search button if st.button("Run Semantic Search"): if not code_input.strip() or not question.strip(): st.error("Both code and question are required.") elif not code_matches_language(code_input, programming_language): st.error(f"Language mismatch. Please check your code and language selection.") else: with st.spinner("Running Semantic Search..."): prompt = get_explanation_prompt(code_input, programming_language, skill_level, user_role, explanation_language, question=question) answer = call_groq_api(prompt) st.success("Answer:") st.write(answer) # Save to chat history st.session_state.semantic_history.append({ "timestamp": str(datetime.datetime.now()), "user_code": code_input, "question": question, "params": { "language": programming_language, "skill": skill_level, "role": user_role, "explanation_language": explanation_language }, "answer": answer }) # Show chat history for semantic search st.markdown("### Semantic Search Chat History") if st.button("Clear Semantic History"): st.session_state.semantic_history = [] for entry in reversed(st.session_state.semantic_history): st.markdown(f"**[{entry['timestamp']}]**") st.code(entry["user_code"], language=entry["params"]["language"].lower()) st.markdown(f"**Q:** {entry['question']}") st.markdown(f"**A:** {entry['answer']}") st.markdown("---") elif page == "Code Comment Generator": st.header("Code Comment Generator") code_input = st.text_area("Paste your code here", height=200, key="comment_code") uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="comment_file") if uploaded_file: code_input = uploaded_file.read().decode("utf-8") st.text_area("File content", code_input, height=200, key="comment_file_content") programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="comment_lang") if st.button("Generate Comments"): if not code_input.strip(): st.error("Please paste or upload your code.") elif not code_matches_language(code_input, programming_language): st.error(f"Language mismatch. Please check your code and language selection.") else: with st.spinner("Generating commented code..."): lang_instruction = f" Respond in {explanation_language}." if explanation_language != "English" else "" role_level_instruction = f" The user is a {skill_level} {user_role}." prompt = ( f"Add clear, helpful comments to this {programming_language} code for a {skill_level} {user_role}.{lang_instruction}\n\n" f"{code_input}" ) commented_code = call_blackbox_agent([ {"role": "system", "content": "You are a helpful coding assistant."}, {"role": "user", "content": prompt} ]) st.success("Commented code generated!") st.code(commented_code, language=programming_language.lower()) st.download_button("Download Commented Code", commented_code, file_name="commented_code.txt") # Save to chat history st.session_state.comment_history.append({ "timestamp": str(datetime.datetime.now()), "user_code": code_input, "params": { "language": programming_language, "skill": skill_level, "role": user_role, "explanation_language": explanation_language }, "commented_code": commented_code }) # Show chat history for code comments st.markdown("### Code Comment Chat History") if st.button("Clear Comment History"): st.session_state.comment_history = [] for entry in reversed(st.session_state.comment_history): st.markdown(f"**[{entry['timestamp']}]**") st.code(entry["user_code"], language=entry["params"]["language"].lower()) st.markdown("**Commented Code:**") st.code(entry["commented_code"], language=entry["params"]["language"].lower()) st.markdown("---") st.markdown("---") def split_code_into_chunks(code, lang): if lang.lower() == "python": # Corrected regex pattern for Python code splitting pattern = r'(def\s+\w+\(.*?\):|class\s+\w+\(.*?\)?:)' splits = re.split(pattern, code) chunks = [] for i in range(1, len(splits), 2): header = splits[i] body = splits[i+1] if (i+1) < len(splits) else "" chunks.append(header + body) return chunks if chunks else [code] else: return [code]