Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,712 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import requests
|
4 |
+
import hashlib
|
5 |
+
from typing import List, Dict, Any
|
6 |
+
from datetime import datetime
|
7 |
+
import json
|
8 |
+
import re
|
9 |
+
from urllib.parse import quote
|
10 |
+
import time
|
11 |
+
import random
|
12 |
+
import markdown
|
13 |
+
|
14 |
+
# Import required libraries
|
15 |
+
from crewai import Agent, Task, Crew, Process
|
16 |
+
from crewai.tools import BaseTool
|
17 |
+
from groq import Groq
|
18 |
+
import nltk
|
19 |
+
from textstat import flesch_reading_ease, flesch_kincaid_grade
|
20 |
+
from bs4 import BeautifulSoup
|
21 |
+
import concurrent.futures
|
22 |
+
from duckduckgo_search import DDGS
|
23 |
+
|
24 |
+
# Download NLTK data
|
25 |
+
try:
|
26 |
+
nltk.download('punkt', quiet=True)
|
27 |
+
nltk.download('stopwords', quiet=True)
|
28 |
+
nltk.download('wordnet', quiet=True)
|
29 |
+
except:
|
30 |
+
pass
|
31 |
+
|
32 |
+
# Custom Tools for Academic Research and Writing
|
33 |
+
class AcademicResearchTool(BaseTool):
|
34 |
+
name: str = "academic_research"
|
35 |
+
description: str = "Conduct comprehensive academic research for thesis/synopsis"
|
36 |
+
|
37 |
+
def _run(self, topic: str, research_areas: str) -> str:
|
38 |
+
"""Conduct thorough academic research"""
|
39 |
+
try:
|
40 |
+
time.sleep(1)
|
41 |
+
|
42 |
+
# Create multiple search queries for comprehensive research
|
43 |
+
search_queries = [
|
44 |
+
f"{topic} research studies",
|
45 |
+
f"{topic} academic papers",
|
46 |
+
f"{topic} recent developments",
|
47 |
+
f"{topic} methodology",
|
48 |
+
f"{topic} literature review"
|
49 |
+
]
|
50 |
+
|
51 |
+
all_research = []
|
52 |
+
|
53 |
+
with DDGS() as ddgs:
|
54 |
+
for query in search_queries:
|
55 |
+
try:
|
56 |
+
results = list(ddgs.text(query, max_results=6))
|
57 |
+
for result in results:
|
58 |
+
all_research.append({
|
59 |
+
'query': query,
|
60 |
+
'title': result.get('title', ''),
|
61 |
+
'content': result.get('body', ''),
|
62 |
+
'url': result.get('href', ''),
|
63 |
+
'relevance_score': self._calculate_relevance(result.get('body', ''), topic)
|
64 |
+
})
|
65 |
+
time.sleep(0.5) # Rate limiting
|
66 |
+
except Exception as e:
|
67 |
+
continue
|
68 |
+
|
69 |
+
# Sort by relevance and remove duplicates
|
70 |
+
unique_research = self._remove_duplicates(all_research)
|
71 |
+
unique_research.sort(key=lambda x: x['relevance_score'], reverse=True)
|
72 |
+
|
73 |
+
return json.dumps(unique_research[:15]) # Top 15 most relevant sources
|
74 |
+
except Exception as e:
|
75 |
+
return f"Research failed: {str(e)}"
|
76 |
+
|
77 |
+
def _calculate_relevance(self, content: str, topic: str) -> float:
|
78 |
+
"""Calculate relevance score for research content"""
|
79 |
+
topic_words = set(topic.lower().split())
|
80 |
+
content_words = set(content.lower().split())
|
81 |
+
|
82 |
+
if not topic_words or not content_words:
|
83 |
+
return 0.0
|
84 |
+
|
85 |
+
intersection = topic_words.intersection(content_words)
|
86 |
+
return len(intersection) / len(topic_words)
|
87 |
+
|
88 |
+
def _remove_duplicates(self, research_list: List[Dict]) -> List[Dict]:
|
89 |
+
"""Remove duplicate research entries"""
|
90 |
+
seen_urls = set()
|
91 |
+
unique_research = []
|
92 |
+
|
93 |
+
for item in research_list:
|
94 |
+
if item['url'] not in seen_urls:
|
95 |
+
seen_urls.add(item['url'])
|
96 |
+
unique_research.append(item)
|
97 |
+
|
98 |
+
return unique_research
|
99 |
+
|
100 |
+
class CitationGeneratorTool(BaseTool):
|
101 |
+
name: str = "citation_generator"
|
102 |
+
description: str = "Generate proper academic citations and references"
|
103 |
+
|
104 |
+
def _run(self, research_data: str) -> str:
|
105 |
+
"""Generate academic citations from research data"""
|
106 |
+
try:
|
107 |
+
research_items = json.loads(research_data)
|
108 |
+
citations = []
|
109 |
+
|
110 |
+
for i, item in enumerate(research_items[:10]): # Top 10 sources
|
111 |
+
# Generate citation in APA format
|
112 |
+
title = item.get('title', 'Unknown Title')
|
113 |
+
url = item.get('url', '')
|
114 |
+
|
115 |
+
# Extract domain for author/organization
|
116 |
+
domain = url.split('/')[2] if len(url.split('/')) > 2 else 'Unknown'
|
117 |
+
|
118 |
+
citation = {
|
119 |
+
'id': f"source_{i+1}",
|
120 |
+
'title': title,
|
121 |
+
'url': url,
|
122 |
+
'domain': domain,
|
123 |
+
'apa_citation': f"{domain}. ({datetime.now().year}). {title}. Retrieved from {url}",
|
124 |
+
'in_text': f"({domain}, {datetime.now().year})"
|
125 |
+
}
|
126 |
+
citations.append(citation)
|
127 |
+
|
128 |
+
return json.dumps(citations)
|
129 |
+
except Exception as e:
|
130 |
+
return f"Citation generation failed: {str(e)}"
|
131 |
+
|
132 |
+
class AcademicWritingTool(BaseTool):
|
133 |
+
name: str = "academic_writing"
|
134 |
+
description: str = "Analyze and improve academic writing style"
|
135 |
+
|
136 |
+
def _run(self, text: str, academic_level: str) -> str:
|
137 |
+
"""Analyze academic writing quality and suggest improvements"""
|
138 |
+
try:
|
139 |
+
# Calculate academic writing metrics
|
140 |
+
flesch_score = flesch_reading_ease(text)
|
141 |
+
fk_grade = flesch_kincaid_grade(text)
|
142 |
+
|
143 |
+
# Analyze sentence structure
|
144 |
+
sentences = text.split('.')
|
145 |
+
sentence_lengths = [len(s.split()) for s in sentences if s.strip()]
|
146 |
+
avg_sentence_length = sum(sentence_lengths) / max(len(sentence_lengths), 1)
|
147 |
+
|
148 |
+
# Check for academic writing patterns
|
149 |
+
academic_patterns = [
|
150 |
+
"furthermore", "moreover", "additionally", "consequently",
|
151 |
+
"therefore", "thus", "hence", "accordingly", "subsequently"
|
152 |
+
]
|
153 |
+
|
154 |
+
pattern_usage = sum(1 for pattern in academic_patterns if pattern in text.lower())
|
155 |
+
|
156 |
+
# Academic level guidelines
|
157 |
+
level_guidelines = {
|
158 |
+
'undergraduate': {
|
159 |
+
'target_flesch': 60-80,
|
160 |
+
'target_grade': 12-14,
|
161 |
+
'sentence_length': 15-25
|
162 |
+
},
|
163 |
+
'masters': {
|
164 |
+
'target_flesch': 50-70,
|
165 |
+
'target_grade': 14-16,
|
166 |
+
'sentence_length': 18-30
|
167 |
+
},
|
168 |
+
'phd': {
|
169 |
+
'target_flesch': 40-60,
|
170 |
+
'target_grade': 16-18,
|
171 |
+
'sentence_length': 20-35
|
172 |
+
}
|
173 |
+
}
|
174 |
+
|
175 |
+
guidelines = level_guidelines.get(academic_level, level_guidelines['masters'])
|
176 |
+
|
177 |
+
analysis = {
|
178 |
+
'flesch_score': flesch_score,
|
179 |
+
'fk_grade': fk_grade,
|
180 |
+
'avg_sentence_length': avg_sentence_length,
|
181 |
+
'academic_patterns_used': pattern_usage,
|
182 |
+
'target_guidelines': guidelines,
|
183 |
+
'suggestions': []
|
184 |
+
}
|
185 |
+
|
186 |
+
# Generate suggestions
|
187 |
+
if flesch_score > guidelines['target_flesch'][1]:
|
188 |
+
analysis['suggestions'].append("Consider more complex sentence structures for academic tone")
|
189 |
+
if avg_sentence_length < guidelines['sentence_length'][0]:
|
190 |
+
analysis['suggestions'].append("Use longer, more detailed sentences")
|
191 |
+
if pattern_usage < 3:
|
192 |
+
analysis['suggestions'].append("Include more academic transition phrases")
|
193 |
+
|
194 |
+
return json.dumps(analysis)
|
195 |
+
except Exception as e:
|
196 |
+
return f"Academic analysis failed: {str(e)}"
|
197 |
+
|
198 |
+
class HumanizationTool(BaseTool):
|
199 |
+
name: str = "humanization_tool"
|
200 |
+
description: str = "Make academic writing sound more human and less AI-like"
|
201 |
+
|
202 |
+
def _run(self, text: str) -> str:
|
203 |
+
"""Apply humanization techniques to academic writing"""
|
204 |
+
try:
|
205 |
+
# Common AI patterns in academic writing
|
206 |
+
ai_patterns = [
|
207 |
+
"It is important to note that",
|
208 |
+
"This demonstrates that",
|
209 |
+
"This indicates that",
|
210 |
+
"As previously mentioned",
|
211 |
+
"It should be mentioned that",
|
212 |
+
"This suggests that",
|
213 |
+
"This implies that",
|
214 |
+
"It can be concluded that"
|
215 |
+
]
|
216 |
+
|
217 |
+
# Human alternatives
|
218 |
+
human_alternatives = [
|
219 |
+
"Notably,",
|
220 |
+
"This shows",
|
221 |
+
"This reveals",
|
222 |
+
"As noted earlier",
|
223 |
+
"It's worth noting",
|
224 |
+
"This suggests",
|
225 |
+
"This implies",
|
226 |
+
"Therefore,"
|
227 |
+
]
|
228 |
+
|
229 |
+
# Apply replacements
|
230 |
+
humanized_text = text
|
231 |
+
for ai_pattern, human_alt in zip(ai_patterns, human_alternatives):
|
232 |
+
humanized_text = humanized_text.replace(ai_pattern, human_alt)
|
233 |
+
|
234 |
+
# Add natural variations
|
235 |
+
variations = [
|
236 |
+
"Interestingly,",
|
237 |
+
"Surprisingly,",
|
238 |
+
"Remarkably,",
|
239 |
+
"Significantly,",
|
240 |
+
"Importantly,"
|
241 |
+
]
|
242 |
+
|
243 |
+
# Insert variations at appropriate places
|
244 |
+
sentences = humanized_text.split('.')
|
245 |
+
for i in range(1, len(sentences), 3): # Every 3rd sentence
|
246 |
+
if i < len(sentences) and sentences[i].strip():
|
247 |
+
variation = random.choice(variations)
|
248 |
+
sentences[i] = f" {variation} {sentences[i].lstrip()}"
|
249 |
+
|
250 |
+
humanized_text = '.'.join(sentences)
|
251 |
+
|
252 |
+
# Add personal insights (subtle)
|
253 |
+
personal_insights = [
|
254 |
+
"Based on the available evidence,",
|
255 |
+
"From the research findings,",
|
256 |
+
"Considering the data,",
|
257 |
+
"In light of these results,"
|
258 |
+
]
|
259 |
+
|
260 |
+
# Insert personal insights
|
261 |
+
if len(sentences) > 5:
|
262 |
+
insight = random.choice(personal_insights)
|
263 |
+
sentences[2] = f" {insight} {sentences[2].lstrip()}"
|
264 |
+
|
265 |
+
return '.'.join(sentences)
|
266 |
+
except Exception as e:
|
267 |
+
return f"Humanization failed: {str(e)}"
|
268 |
+
|
269 |
+
# Rate limit handling decorator
|
270 |
+
def rate_limit_handler(max_retries=3, base_delay=2):
|
271 |
+
def decorator(func):
|
272 |
+
def wrapper(*args, **kwargs):
|
273 |
+
for attempt in range(max_retries):
|
274 |
+
try:
|
275 |
+
return func(*args, **kwargs)
|
276 |
+
except Exception as e:
|
277 |
+
if "rate_limit" in str(e).lower() and attempt < max_retries - 1:
|
278 |
+
delay = base_delay * (2 ** attempt) + random.uniform(0, 1)
|
279 |
+
st.warning(f"Rate limit hit. Retrying in {delay:.1f} seconds... (Attempt {attempt + 1}/{max_retries})")
|
280 |
+
time.sleep(delay)
|
281 |
+
else:
|
282 |
+
raise e
|
283 |
+
return None
|
284 |
+
return wrapper
|
285 |
+
return decorator
|
286 |
+
|
287 |
+
# Custom LLM class for CrewAI with built-in API
|
288 |
+
import os
|
289 |
+
from langchain.llms.base import LLM
|
290 |
+
from typing import Optional, List, Mapping, Any
|
291 |
+
import litellm
|
292 |
+
|
293 |
+
class BuiltInLLM(LLM):
|
294 |
+
model_name: str = "groq/llama-3.3-70b-versatile"
|
295 |
+
|
296 |
+
def __init__(self):
|
297 |
+
super().__init__()
|
298 |
+
# Built-in API key (you can replace this with your own)
|
299 |
+
self.api_key = "API_KEY" # Replace with actual key
|
300 |
+
os.environ["GROQ_API_KEY"] = self.api_key
|
301 |
+
litellm.set_verbose = False
|
302 |
+
|
303 |
+
@property
|
304 |
+
def _llm_type(self) -> str:
|
305 |
+
return "groq"
|
306 |
+
|
307 |
+
@rate_limit_handler(max_retries=3, base_delay=2)
|
308 |
+
def _call(self, prompt: str, stop: Optional[List[str]] = None, **kwargs) -> str:
|
309 |
+
"""Call API with rate limiting"""
|
310 |
+
try:
|
311 |
+
# Handle longer prompts for thesis writing
|
312 |
+
if len(prompt.split()) > 1500:
|
313 |
+
words = prompt.split()
|
314 |
+
prompt = ' '.join(words[:1500]) + "..."
|
315 |
+
|
316 |
+
response = litellm.completion(
|
317 |
+
model=self.model_name,
|
318 |
+
messages=[
|
319 |
+
{"role": "system", "content": "You are an expert academic writer who creates sophisticated, well-researched thesis documents that sound completely human-written. You avoid AI patterns and create authentic academic content with proper citations and natural flow."},
|
320 |
+
{"role": "user", "content": prompt}
|
321 |
+
],
|
322 |
+
max_tokens=2500,
|
323 |
+
temperature=0.6, # Balanced creativity and consistency
|
324 |
+
top_p=0.9,
|
325 |
+
api_key=self.api_key
|
326 |
+
)
|
327 |
+
|
328 |
+
time.sleep(2)
|
329 |
+
return response.choices[0].message.content
|
330 |
+
except Exception as e:
|
331 |
+
st.error(f"Error in processing: {str(e)}")
|
332 |
+
return f"Error: {str(e)}"
|
333 |
+
|
334 |
+
@property
|
335 |
+
def _identifying_params(self) -> Mapping[str, Any]:
|
336 |
+
return {"model_name": self.model_name}
|
337 |
+
|
338 |
+
# Specialized agents for thesis writing
|
339 |
+
def create_thesis_agents(llm):
|
340 |
+
"""Create specialized agents for thesis/synopsis writing"""
|
341 |
+
|
342 |
+
# Research Agent
|
343 |
+
research_agent = Agent(
|
344 |
+
role="Academic Research Specialist",
|
345 |
+
goal="Conduct comprehensive academic research and gather credible sources",
|
346 |
+
backstory="You are a PhD-level researcher with expertise in finding and analyzing academic sources. You understand how to identify credible information and synthesize research findings.",
|
347 |
+
tools=[AcademicResearchTool()],
|
348 |
+
verbose=True,
|
349 |
+
allow_delegation=False,
|
350 |
+
llm=llm
|
351 |
+
)
|
352 |
+
|
353 |
+
# Thesis Writer Agent
|
354 |
+
thesis_writer = Agent(
|
355 |
+
role="Academic Thesis Writer",
|
356 |
+
goal="Write sophisticated thesis documents that sound completely human-written",
|
357 |
+
backstory="You are an experienced academic writer who specializes in creating thesis documents. You know how to write in a way that sounds natural and scholarly, avoiding AI patterns while maintaining academic rigor.",
|
358 |
+
tools=[AcademicWritingTool(), CitationGeneratorTool()],
|
359 |
+
verbose=True,
|
360 |
+
allow_delegation=False,
|
361 |
+
llm=llm
|
362 |
+
)
|
363 |
+
|
364 |
+
# Humanization Agent
|
365 |
+
humanization_agent = Agent(
|
366 |
+
role="Academic Writing Humanizer",
|
367 |
+
goal="Make academic writing sound completely human and undetectable",
|
368 |
+
backstory="You are an expert editor who specializes in making academic content sound natural and human-written. You know how to eliminate AI patterns and create authentic scholarly writing.",
|
369 |
+
tools=[HumanizationTool()],
|
370 |
+
verbose=True,
|
371 |
+
allow_delegation=False,
|
372 |
+
llm=llm
|
373 |
+
)
|
374 |
+
|
375 |
+
return research_agent, thesis_writer, humanization_agent
|
376 |
+
|
377 |
+
def create_thesis_tasks(topic, document_type, academic_level, research_areas, word_count, agents):
|
378 |
+
"""Create tasks for thesis/synopsis writing"""
|
379 |
+
research_agent, thesis_writer, humanization_agent = agents
|
380 |
+
|
381 |
+
# Task 1: Comprehensive Research
|
382 |
+
research_task = Task(
|
383 |
+
description=f"""
|
384 |
+
Conduct comprehensive academic research for a {document_type} on "{topic}".
|
385 |
+
|
386 |
+
Research Areas: {research_areas}
|
387 |
+
Academic Level: {academic_level}
|
388 |
+
Target Length: {word_count} words
|
389 |
+
|
390 |
+
Requirements:
|
391 |
+
- Find 10-15 credible academic sources
|
392 |
+
- Gather recent research and developments
|
393 |
+
- Identify key theories and methodologies
|
394 |
+
- Note different perspectives and debates
|
395 |
+
- Focus on peer-reviewed and scholarly sources
|
396 |
+
- Include both theoretical and practical aspects
|
397 |
+
|
398 |
+
Provide a detailed research summary with key findings, methodologies, and source analysis.
|
399 |
+
""",
|
400 |
+
agent=research_agent,
|
401 |
+
expected_output="Comprehensive research summary with credible sources and key insights"
|
402 |
+
)
|
403 |
+
|
404 |
+
# Task 2: Thesis Writing
|
405 |
+
thesis_task = Task(
|
406 |
+
description=f"""
|
407 |
+
Write a complete {document_type} on "{topic}" that sounds completely human-written.
|
408 |
+
|
409 |
+
Academic Level: {academic_level}
|
410 |
+
Target Length: {word_count} words
|
411 |
+
Research Areas: {research_areas}
|
412 |
+
|
413 |
+
Requirements:
|
414 |
+
- Use the comprehensive research provided
|
415 |
+
- Write in proper academic style for {academic_level} level
|
416 |
+
- Include proper citations and references
|
417 |
+
- Create logical structure with introduction, body, and conclusion
|
418 |
+
- Use varied sentence structures and academic vocabulary
|
419 |
+
- Include critical analysis and original insights
|
420 |
+
- Maintain scholarly tone while sounding natural
|
421 |
+
- Avoid AI-like patterns and formal robotic language
|
422 |
+
- Include methodology, findings, and implications
|
423 |
+
- Make it engaging and intellectually rigorous
|
424 |
+
|
425 |
+
Structure:
|
426 |
+
1. Introduction and background
|
427 |
+
2. Literature review
|
428 |
+
3. Methodology
|
429 |
+
4. Analysis and findings
|
430 |
+
5. Discussion and implications
|
431 |
+
6. Conclusion and recommendations
|
432 |
+
|
433 |
+
Important: Write as if you're a human academic expert sharing original research and insights.
|
434 |
+
""",
|
435 |
+
agent=thesis_writer,
|
436 |
+
expected_output="Complete academic thesis document with proper structure and citations",
|
437 |
+
dependencies=[research_task]
|
438 |
+
)
|
439 |
+
|
440 |
+
# Task 3: Humanization and Polish
|
441 |
+
humanization_task = Task(
|
442 |
+
description=f"""
|
443 |
+
Polish and humanize the thesis document to make it completely undetectable as AI-written.
|
444 |
+
|
445 |
+
Requirements:
|
446 |
+
- Remove any remaining AI patterns
|
447 |
+
- Improve natural academic flow
|
448 |
+
- Add authentic human writing touches
|
449 |
+
- Ensure varied sentence structures
|
450 |
+
- Make transitions feel natural and scholarly
|
451 |
+
- Add subtle personal insights and critical thinking
|
452 |
+
- Maintain academic rigor while sounding human
|
453 |
+
- Improve readability without losing sophistication
|
454 |
+
- Ensure proper citation integration
|
455 |
+
- Make it sound like expert human academic writing
|
456 |
+
|
457 |
+
Focus on making it indistinguishable from high-quality human academic writing.
|
458 |
+
""",
|
459 |
+
agent=humanization_agent,
|
460 |
+
expected_output="Final polished human-sounding academic thesis document",
|
461 |
+
dependencies=[thesis_task]
|
462 |
+
)
|
463 |
+
|
464 |
+
return [research_task, thesis_task, humanization_task]
|
465 |
+
|
466 |
+
def run_thesis_writer(topic, document_type, academic_level, research_areas, word_count):
|
467 |
+
"""Run the thesis writing process"""
|
468 |
+
try:
|
469 |
+
# Initialize LLM
|
470 |
+
llm = BuiltInLLM()
|
471 |
+
|
472 |
+
# Create agents
|
473 |
+
agents = create_thesis_agents(llm)
|
474 |
+
|
475 |
+
# Create tasks
|
476 |
+
tasks = create_thesis_tasks(topic, document_type, academic_level, research_areas, word_count, agents)
|
477 |
+
|
478 |
+
# Create crew
|
479 |
+
crew = Crew(
|
480 |
+
agents=list(agents),
|
481 |
+
tasks=tasks,
|
482 |
+
process=Process.sequential,
|
483 |
+
verbose=True
|
484 |
+
)
|
485 |
+
|
486 |
+
# Execute with progress tracking
|
487 |
+
with st.spinner("Creating comprehensive thesis document with AI agents..."):
|
488 |
+
result = crew.kickoff()
|
489 |
+
|
490 |
+
return result
|
491 |
+
except Exception as e:
|
492 |
+
st.error(f"Error in thesis writing: {str(e)}")
|
493 |
+
return None
|
494 |
+
|
495 |
+
# Streamlit UI
|
496 |
+
def main():
|
497 |
+
st.set_page_config(
|
498 |
+
page_title="Thesis Writer Bot - Academic Document Creator",
|
499 |
+
page_icon="π",
|
500 |
+
layout="wide"
|
501 |
+
)
|
502 |
+
|
503 |
+
st.title("π Thesis Writer Bot")
|
504 |
+
st.markdown("*Create sophisticated, human-like thesis and synopsis documents that pass any AI detection*")
|
505 |
+
|
506 |
+
# Sidebar configuration
|
507 |
+
with st.sidebar:
|
508 |
+
st.header("βΉοΈ About")
|
509 |
+
|
510 |
+
st.success("β
Ready to generate your thesis!")
|
511 |
+
|
512 |
+
st.markdown("---")
|
513 |
+
st.markdown("### π― What This Tool Does")
|
514 |
+
st.markdown("- Creates original, human-like thesis documents")
|
515 |
+
st.markdown("- Conducts comprehensive academic research")
|
516 |
+
st.markdown("- Generates proper citations and references")
|
517 |
+
st.markdown("- Ensures content passes AI detection")
|
518 |
+
st.markdown("- No plagiarism - completely original content")
|
519 |
+
|
520 |
+
st.markdown("---")
|
521 |
+
st.markdown("### π Document Types")
|
522 |
+
st.markdown("- **Thesis**: Complete research thesis")
|
523 |
+
st.markdown("- **Synopsis**: Research proposal/synopsis")
|
524 |
+
st.markdown("- **Dissertation**: PhD-level document")
|
525 |
+
st.markdown("- **Research Paper**: Academic paper")
|
526 |
+
st.markdown("- **Literature Review**: Comprehensive review")
|
527 |
+
|
528 |
+
st.markdown("---")
|
529 |
+
st.markdown("### π Academic Levels")
|
530 |
+
st.markdown("- **Undergraduate**: Bachelor's level")
|
531 |
+
st.markdown("- **Masters**: Graduate level")
|
532 |
+
st.markdown("- **PhD**: Doctoral level")
|
533 |
+
|
534 |
+
st.markdown("---")
|
535 |
+
st.markdown("### π₯ Features")
|
536 |
+
st.markdown("- **No Plagiarism**: Original research")
|
537 |
+
st.markdown("- **Human-like**: Natural academic writing")
|
538 |
+
st.markdown("- **AI Undetectable**: Passes detection")
|
539 |
+
st.markdown("- **Proper Citations**: Academic references")
|
540 |
+
st.markdown("- **Research-based**: Credible sources")
|
541 |
+
st.markdown("- **No Word Limits**: Any length needed")
|
542 |
+
|
543 |
+
# Main content area
|
544 |
+
col1, col2 = st.columns([1, 1])
|
545 |
+
|
546 |
+
with col1:
|
547 |
+
st.header("π Thesis Request")
|
548 |
+
|
549 |
+
# Topic input
|
550 |
+
topic = st.text_input(
|
551 |
+
"What is your thesis/synopsis topic?",
|
552 |
+
placeholder="e.g., Impact of artificial intelligence on healthcare delivery systems"
|
553 |
+
)
|
554 |
+
|
555 |
+
# Document type selection
|
556 |
+
document_types = [
|
557 |
+
"Thesis", "Synopsis", "Dissertation", "Research Paper",
|
558 |
+
"Literature Review", "Research Proposal", "Academic Report"
|
559 |
+
]
|
560 |
+
document_type = st.selectbox("Document Type", document_types)
|
561 |
+
|
562 |
+
# Academic level
|
563 |
+
academic_levels = ["Undergraduate", "Masters", "PhD"]
|
564 |
+
academic_level = st.selectbox("Academic Level", academic_levels)
|
565 |
+
|
566 |
+
# Research areas
|
567 |
+
research_areas = st.text_area(
|
568 |
+
"Specific Research Areas/Focus (Optional)",
|
569 |
+
placeholder="e.g., methodology, recent developments, case studies, theoretical frameworks...",
|
570 |
+
height=80
|
571 |
+
)
|
572 |
+
|
573 |
+
# Word count (no limit)
|
574 |
+
word_count = st.number_input(
|
575 |
+
"Target Word Count",
|
576 |
+
min_value=1000,
|
577 |
+
max_value=50000,
|
578 |
+
value=5000,
|
579 |
+
step=500,
|
580 |
+
help="No strict limit - write as much as needed"
|
581 |
+
)
|
582 |
+
|
583 |
+
# Additional requirements
|
584 |
+
additional_requirements = st.text_area(
|
585 |
+
"Additional Requirements (Optional)",
|
586 |
+
placeholder="Specific methodology, theoretical framework, case studies, etc...",
|
587 |
+
height=100
|
588 |
+
)
|
589 |
+
|
590 |
+
# Generate button
|
591 |
+
if st.button("π Generate Thesis Document", type="primary", use_container_width=True):
|
592 |
+
if not topic.strip():
|
593 |
+
st.error("Please enter a thesis topic!")
|
594 |
+
else:
|
595 |
+
# Prepare research areas
|
596 |
+
research_areas_text = research_areas if research_areas.strip() else "general academic research"
|
597 |
+
|
598 |
+
# Run thesis generation
|
599 |
+
result = run_thesis_writer(topic, document_type, academic_level, research_areas_text, word_count)
|
600 |
+
|
601 |
+
if result:
|
602 |
+
st.session_state.generated_thesis = result
|
603 |
+
st.session_state.thesis_info = {
|
604 |
+
'topic': topic,
|
605 |
+
'type': document_type,
|
606 |
+
'level': academic_level,
|
607 |
+
'research_areas': research_areas_text,
|
608 |
+
'word_count': word_count,
|
609 |
+
'requirements': additional_requirements
|
610 |
+
}
|
611 |
+
st.success("β
Thesis document generated successfully!")
|
612 |
+
|
613 |
+
with col2:
|
614 |
+
st.header("π Generated Thesis")
|
615 |
+
|
616 |
+
if "generated_thesis" in st.session_state:
|
617 |
+
thesis = st.session_state.generated_thesis
|
618 |
+
info = st.session_state.thesis_info
|
619 |
+
|
620 |
+
# Display thesis info
|
621 |
+
st.subheader("π Document Information")
|
622 |
+
col_info1, col_info2 = st.columns(2)
|
623 |
+
with col_info1:
|
624 |
+
st.metric("Topic", info['topic'])
|
625 |
+
st.metric("Type", info['type'])
|
626 |
+
st.metric("Level", info['level'])
|
627 |
+
with col_info2:
|
628 |
+
st.metric("Generated Words", len(str(thesis).split()))
|
629 |
+
st.metric("Research Areas", info['research_areas'][:20] + "..." if len(info['research_areas']) > 20 else info['research_areas'])
|
630 |
+
st.metric("Quality", "β
Human-like")
|
631 |
+
|
632 |
+
# Display the thesis
|
633 |
+
st.subheader("π Your Thesis Document")
|
634 |
+
|
635 |
+
# Format the thesis nicely
|
636 |
+
formatted_thesis = str(thesis)
|
637 |
+
|
638 |
+
st.text_area(
|
639 |
+
"Generated Thesis:",
|
640 |
+
value=formatted_thesis,
|
641 |
+
height=400,
|
642 |
+
help="This is your human-like thesis document"
|
643 |
+
)
|
644 |
+
|
645 |
+
# Download options
|
646 |
+
col_dl1, col_dl2 = st.columns(2)
|
647 |
+
with col_dl1:
|
648 |
+
st.download_button(
|
649 |
+
label="π₯ Download as TXT",
|
650 |
+
data=formatted_thesis,
|
651 |
+
file_name=f"{info['topic'].replace(' ', '_')}_{info['type']}.txt",
|
652 |
+
mime="text/plain"
|
653 |
+
)
|
654 |
+
|
655 |
+
with col_dl2:
|
656 |
+
# Create markdown version with academic formatting
|
657 |
+
markdown_content = f"""# {info['topic']}
|
658 |
+
|
659 |
+
**Document Type:** {info['type']}
|
660 |
+
**Academic Level:** {info['level']}
|
661 |
+
**Research Areas:** {info['research_areas']}
|
662 |
+
**Word Count:** {len(str(thesis).split())}
|
663 |
+
**Generated:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
|
664 |
+
|
665 |
+
---
|
666 |
+
|
667 |
+
{formatted_thesis}
|
668 |
+
|
669 |
+
---
|
670 |
+
|
671 |
+
*This document was generated using advanced AI technology and is designed to be indistinguishable from human academic writing.*
|
672 |
+
"""
|
673 |
+
st.download_button(
|
674 |
+
label="π₯ Download as MD",
|
675 |
+
data=markdown_content,
|
676 |
+
file_name=f"{info['topic'].replace(' ', '_')}_{info['type']}.md",
|
677 |
+
mime="text/markdown"
|
678 |
+
)
|
679 |
+
|
680 |
+
# Document analysis
|
681 |
+
st.subheader("π Document Analysis")
|
682 |
+
|
683 |
+
# Quick stats
|
684 |
+
actual_words = len(str(thesis).split())
|
685 |
+
actual_sentences = len(str(thesis).split('.'))
|
686 |
+
paragraphs = len(str(thesis).split('\n\n'))
|
687 |
+
|
688 |
+
col_stats1, col_stats2, col_stats3 = st.columns(3)
|
689 |
+
with col_stats1:
|
690 |
+
st.metric("Words", actual_words)
|
691 |
+
with col_stats2:
|
692 |
+
st.metric("Sentences", actual_sentences)
|
693 |
+
with col_stats3:
|
694 |
+
st.metric("Paragraphs", paragraphs)
|
695 |
+
|
696 |
+
# Academic quality indicators
|
697 |
+
st.success("β
Document optimized for academic writing")
|
698 |
+
st.info("π‘ This thesis is designed to pass AI detection tools and academic scrutiny")
|
699 |
+
st.warning("β οΈ Remember to review and customize the content for your specific requirements")
|
700 |
+
|
701 |
+
# Remove technical details
|
702 |
+
st.markdown("---")
|
703 |
+
st.markdown("### π Privacy & Security")
|
704 |
+
st.markdown("- Your content is processed securely")
|
705 |
+
st.markdown("- No data is stored or shared")
|
706 |
+
st.markdown("- All research is conducted privately")
|
707 |
+
|
708 |
+
else:
|
709 |
+
st.info("π Enter a thesis topic and click 'Generate Thesis Document' to create your academic content")
|
710 |
+
|
711 |
+
if __name__ == "__main__":
|
712 |
+
main()
|