Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
|
|
2 |
import os
|
3 |
import requests
|
4 |
import hashlib
|
5 |
-
from typing import List, Dict, Any
|
6 |
from datetime import datetime
|
7 |
import json
|
8 |
import re
|
@@ -11,7 +11,6 @@ import time
|
|
11 |
import random
|
12 |
import markdown
|
13 |
|
14 |
-
# Import required libraries
|
15 |
from crewai import Agent, Task, Crew, Process
|
16 |
from crewai.tools import BaseTool
|
17 |
from groq import Groq
|
@@ -35,11 +34,8 @@ class AcademicResearchTool(BaseTool):
|
|
35 |
description: str = "Conduct comprehensive academic research for thesis/synopsis"
|
36 |
|
37 |
def _run(self, topic: str, research_areas: str) -> str:
|
38 |
-
"""Conduct thorough academic research"""
|
39 |
try:
|
40 |
time.sleep(1)
|
41 |
-
|
42 |
-
# Create multiple search queries for comprehensive research
|
43 |
search_queries = [
|
44 |
f"{topic} research studies",
|
45 |
f"{topic} academic papers",
|
@@ -47,9 +43,7 @@ class AcademicResearchTool(BaseTool):
|
|
47 |
f"{topic} methodology",
|
48 |
f"{topic} literature review"
|
49 |
]
|
50 |
-
|
51 |
all_research = []
|
52 |
-
|
53 |
with DDGS() as ddgs:
|
54 |
for query in search_queries:
|
55 |
try:
|
@@ -62,39 +56,30 @@ class AcademicResearchTool(BaseTool):
|
|
62 |
'url': result.get('href', ''),
|
63 |
'relevance_score': self._calculate_relevance(result.get('body', ''), topic)
|
64 |
})
|
65 |
-
time.sleep(0.5)
|
66 |
-
except Exception
|
67 |
continue
|
68 |
-
|
69 |
-
# Sort by relevance and remove duplicates
|
70 |
unique_research = self._remove_duplicates(all_research)
|
71 |
unique_research.sort(key=lambda x: x['relevance_score'], reverse=True)
|
72 |
-
|
73 |
-
return json.dumps(unique_research[:15]) # Top 15 most relevant sources
|
74 |
except Exception as e:
|
75 |
return f"Research failed: {str(e)}"
|
76 |
|
77 |
def _calculate_relevance(self, content: str, topic: str) -> float:
|
78 |
-
"""Calculate relevance score for research content"""
|
79 |
topic_words = set(topic.lower().split())
|
80 |
content_words = set(content.lower().split())
|
81 |
-
|
82 |
if not topic_words or not content_words:
|
83 |
return 0.0
|
84 |
-
|
85 |
intersection = topic_words.intersection(content_words)
|
86 |
return len(intersection) / len(topic_words)
|
87 |
|
88 |
def _remove_duplicates(self, research_list: List[Dict]) -> List[Dict]:
|
89 |
-
"""Remove duplicate research entries"""
|
90 |
seen_urls = set()
|
91 |
unique_research = []
|
92 |
-
|
93 |
for item in research_list:
|
94 |
if item['url'] not in seen_urls:
|
95 |
seen_urls.add(item['url'])
|
96 |
unique_research.append(item)
|
97 |
-
|
98 |
return unique_research
|
99 |
|
100 |
class CitationGeneratorTool(BaseTool):
|
@@ -102,19 +87,13 @@ class CitationGeneratorTool(BaseTool):
|
|
102 |
description: str = "Generate proper academic citations and references"
|
103 |
|
104 |
def _run(self, research_data: str) -> str:
|
105 |
-
"""Generate academic citations from research data"""
|
106 |
try:
|
107 |
research_items = json.loads(research_data)
|
108 |
citations = []
|
109 |
-
|
110 |
-
for i, item in enumerate(research_items[:10]): # Top 10 sources
|
111 |
-
# Generate citation in APA format
|
112 |
title = item.get('title', 'Unknown Title')
|
113 |
url = item.get('url', '')
|
114 |
-
|
115 |
-
# Extract domain for author/organization
|
116 |
domain = url.split('/')[2] if len(url.split('/')) > 2 else 'Unknown'
|
117 |
-
|
118 |
citation = {
|
119 |
'id': f"source_{i+1}",
|
120 |
'title': title,
|
@@ -124,7 +103,6 @@ class CitationGeneratorTool(BaseTool):
|
|
124 |
'in_text': f"({domain}, {datetime.now().year})"
|
125 |
}
|
126 |
citations.append(citation)
|
127 |
-
|
128 |
return json.dumps(citations)
|
129 |
except Exception as e:
|
130 |
return f"Citation generation failed: {str(e)}"
|
@@ -134,46 +112,35 @@ class AcademicWritingTool(BaseTool):
|
|
134 |
description: str = "Analyze and improve academic writing style"
|
135 |
|
136 |
def _run(self, text: str, academic_level: str) -> str:
|
137 |
-
"""Analyze academic writing quality and suggest improvements"""
|
138 |
try:
|
139 |
-
# Calculate academic writing metrics
|
140 |
flesch_score = flesch_reading_ease(text)
|
141 |
fk_grade = flesch_kincaid_grade(text)
|
142 |
-
|
143 |
-
# Analyze sentence structure
|
144 |
sentences = text.split('.')
|
145 |
sentence_lengths = [len(s.split()) for s in sentences if s.strip()]
|
146 |
avg_sentence_length = sum(sentence_lengths) / max(len(sentence_lengths), 1)
|
147 |
-
|
148 |
-
# Check for academic writing patterns
|
149 |
academic_patterns = [
|
150 |
"furthermore", "moreover", "additionally", "consequently",
|
151 |
"therefore", "thus", "hence", "accordingly", "subsequently"
|
152 |
]
|
153 |
-
|
154 |
pattern_usage = sum(1 for pattern in academic_patterns if pattern in text.lower())
|
155 |
-
|
156 |
-
# Academic level guidelines
|
157 |
level_guidelines = {
|
158 |
'undergraduate': {
|
159 |
-
'target_flesch': 60
|
160 |
-
'target_grade': 12
|
161 |
-
'sentence_length': 15
|
162 |
},
|
163 |
'masters': {
|
164 |
-
'target_flesch': 50
|
165 |
-
'target_grade': 14
|
166 |
-
'sentence_length': 18
|
167 |
},
|
168 |
'phd': {
|
169 |
-
'target_flesch': 40
|
170 |
-
'target_grade': 16
|
171 |
-
'sentence_length': 20
|
172 |
}
|
173 |
}
|
174 |
-
|
175 |
-
guidelines = level_guidelines.get(academic_level, level_guidelines['masters'])
|
176 |
-
|
177 |
analysis = {
|
178 |
'flesch_score': flesch_score,
|
179 |
'fk_grade': fk_grade,
|
@@ -182,15 +149,12 @@ class AcademicWritingTool(BaseTool):
|
|
182 |
'target_guidelines': guidelines,
|
183 |
'suggestions': []
|
184 |
}
|
185 |
-
|
186 |
-
# Generate suggestions
|
187 |
if flesch_score > guidelines['target_flesch'][1]:
|
188 |
analysis['suggestions'].append("Consider more complex sentence structures for academic tone")
|
189 |
if avg_sentence_length < guidelines['sentence_length'][0]:
|
190 |
analysis['suggestions'].append("Use longer, more detailed sentences")
|
191 |
if pattern_usage < 3:
|
192 |
analysis['suggestions'].append("Include more academic transition phrases")
|
193 |
-
|
194 |
return json.dumps(analysis)
|
195 |
except Exception as e:
|
196 |
return f"Academic analysis failed: {str(e)}"
|
@@ -200,9 +164,7 @@ class HumanizationTool(BaseTool):
|
|
200 |
description: str = "Make academic writing sound more human and less AI-like"
|
201 |
|
202 |
def _run(self, text: str) -> str:
|
203 |
-
"""Apply humanization techniques to academic writing"""
|
204 |
try:
|
205 |
-
# Common AI patterns in academic writing
|
206 |
ai_patterns = [
|
207 |
"It is important to note that",
|
208 |
"This demonstrates that",
|
@@ -213,8 +175,6 @@ class HumanizationTool(BaseTool):
|
|
213 |
"This implies that",
|
214 |
"It can be concluded that"
|
215 |
]
|
216 |
-
|
217 |
-
# Human alternatives
|
218 |
human_alternatives = [
|
219 |
"Notably,",
|
220 |
"This shows",
|
@@ -225,13 +185,9 @@ class HumanizationTool(BaseTool):
|
|
225 |
"This implies",
|
226 |
"Therefore,"
|
227 |
]
|
228 |
-
|
229 |
-
# Apply replacements
|
230 |
humanized_text = text
|
231 |
for ai_pattern, human_alt in zip(ai_patterns, human_alternatives):
|
232 |
humanized_text = humanized_text.replace(ai_pattern, human_alt)
|
233 |
-
|
234 |
-
# Add natural variations
|
235 |
variations = [
|
236 |
"Interestingly,",
|
237 |
"Surprisingly,",
|
@@ -239,34 +195,25 @@ class HumanizationTool(BaseTool):
|
|
239 |
"Significantly,",
|
240 |
"Importantly,"
|
241 |
]
|
242 |
-
|
243 |
-
# Insert variations at appropriate places
|
244 |
sentences = humanized_text.split('.')
|
245 |
-
for i in range(1, len(sentences), 3):
|
246 |
if i < len(sentences) and sentences[i].strip():
|
247 |
variation = random.choice(variations)
|
248 |
sentences[i] = f" {variation} {sentences[i].lstrip()}"
|
249 |
-
|
250 |
humanized_text = '.'.join(sentences)
|
251 |
-
|
252 |
-
# Add personal insights (subtle)
|
253 |
personal_insights = [
|
254 |
"Based on the available evidence,",
|
255 |
"From the research findings,",
|
256 |
"Considering the data,",
|
257 |
"In light of these results,"
|
258 |
]
|
259 |
-
|
260 |
-
# Insert personal insights
|
261 |
if len(sentences) > 5:
|
262 |
insight = random.choice(personal_insights)
|
263 |
sentences[2] = f" {insight} {sentences[2].lstrip()}"
|
264 |
-
|
265 |
return '.'.join(sentences)
|
266 |
except Exception as e:
|
267 |
return f"Humanization failed: {str(e)}"
|
268 |
|
269 |
-
# Rate limit handling decorator
|
270 |
def rate_limit_handler(max_retries=3, base_delay=2):
|
271 |
def decorator(func):
|
272 |
def wrapper(*args, **kwargs):
|
@@ -285,18 +232,15 @@ def rate_limit_handler(max_retries=3, base_delay=2):
|
|
285 |
return decorator
|
286 |
|
287 |
# Custom LLM class for CrewAI with built-in API
|
288 |
-
import os
|
289 |
-
from langchain.llms.base import LLM
|
290 |
-
from typing import Optional, List, Mapping, Any
|
291 |
import litellm
|
|
|
292 |
|
293 |
class BuiltInLLM(LLM):
|
294 |
model_name: str = "groq/llama-3.3-70b-versatile"
|
295 |
-
|
|
|
296 |
def __init__(self):
|
297 |
super().__init__()
|
298 |
-
# Built-in API key (you can replace this with your own)
|
299 |
-
self.api_key = "API_KEY" # Replace with actual key
|
300 |
os.environ["GROQ_API_KEY"] = self.api_key
|
301 |
litellm.set_verbose = False
|
302 |
|
@@ -306,13 +250,10 @@ class BuiltInLLM(LLM):
|
|
306 |
|
307 |
@rate_limit_handler(max_retries=3, base_delay=2)
|
308 |
def _call(self, prompt: str, stop: Optional[List[str]] = None, **kwargs) -> str:
|
309 |
-
"""Call API with rate limiting"""
|
310 |
try:
|
311 |
-
# Handle longer prompts for thesis writing
|
312 |
if len(prompt.split()) > 1500:
|
313 |
words = prompt.split()
|
314 |
prompt = ' '.join(words[:1500]) + "..."
|
315 |
-
|
316 |
response = litellm.completion(
|
317 |
model=self.model_name,
|
318 |
messages=[
|
@@ -320,11 +261,10 @@ class BuiltInLLM(LLM):
|
|
320 |
{"role": "user", "content": prompt}
|
321 |
],
|
322 |
max_tokens=2500,
|
323 |
-
temperature=0.6,
|
324 |
top_p=0.9,
|
325 |
api_key=self.api_key
|
326 |
)
|
327 |
-
|
328 |
time.sleep(2)
|
329 |
return response.choices[0].message.content
|
330 |
except Exception as e:
|
@@ -335,11 +275,7 @@ class BuiltInLLM(LLM):
|
|
335 |
def _identifying_params(self) -> Mapping[str, Any]:
|
336 |
return {"model_name": self.model_name}
|
337 |
|
338 |
-
# Specialized agents for thesis writing
|
339 |
def create_thesis_agents(llm):
|
340 |
-
"""Create specialized agents for thesis/synopsis writing"""
|
341 |
-
|
342 |
-
# Research Agent
|
343 |
research_agent = Agent(
|
344 |
role="Academic Research Specialist",
|
345 |
goal="Conduct comprehensive academic research and gather credible sources",
|
@@ -349,8 +285,6 @@ def create_thesis_agents(llm):
|
|
349 |
allow_delegation=False,
|
350 |
llm=llm
|
351 |
)
|
352 |
-
|
353 |
-
# Thesis Writer Agent
|
354 |
thesis_writer = Agent(
|
355 |
role="Academic Thesis Writer",
|
356 |
goal="Write sophisticated thesis documents that sound completely human-written",
|
@@ -360,8 +294,6 @@ def create_thesis_agents(llm):
|
|
360 |
allow_delegation=False,
|
361 |
llm=llm
|
362 |
)
|
363 |
-
|
364 |
-
# Humanization Agent
|
365 |
humanization_agent = Agent(
|
366 |
role="Academic Writing Humanizer",
|
367 |
goal="Make academic writing sound completely human and undetectable",
|
@@ -371,22 +303,16 @@ def create_thesis_agents(llm):
|
|
371 |
allow_delegation=False,
|
372 |
llm=llm
|
373 |
)
|
374 |
-
|
375 |
return research_agent, thesis_writer, humanization_agent
|
376 |
|
377 |
def create_thesis_tasks(topic, document_type, academic_level, research_areas, word_count, agents):
|
378 |
-
"""Create tasks for thesis/synopsis writing"""
|
379 |
research_agent, thesis_writer, humanization_agent = agents
|
380 |
-
|
381 |
-
# Task 1: Comprehensive Research
|
382 |
research_task = Task(
|
383 |
description=f"""
|
384 |
Conduct comprehensive academic research for a {document_type} on "{topic}".
|
385 |
-
|
386 |
Research Areas: {research_areas}
|
387 |
Academic Level: {academic_level}
|
388 |
Target Length: {word_count} words
|
389 |
-
|
390 |
Requirements:
|
391 |
- Find 10-15 credible academic sources
|
392 |
- Gather recent research and developments
|
@@ -394,22 +320,17 @@ def create_thesis_tasks(topic, document_type, academic_level, research_areas, wo
|
|
394 |
- Note different perspectives and debates
|
395 |
- Focus on peer-reviewed and scholarly sources
|
396 |
- Include both theoretical and practical aspects
|
397 |
-
|
398 |
Provide a detailed research summary with key findings, methodologies, and source analysis.
|
399 |
""",
|
400 |
agent=research_agent,
|
401 |
expected_output="Comprehensive research summary with credible sources and key insights"
|
402 |
)
|
403 |
-
|
404 |
-
# Task 2: Thesis Writing
|
405 |
thesis_task = Task(
|
406 |
description=f"""
|
407 |
Write a complete {document_type} on "{topic}" that sounds completely human-written.
|
408 |
-
|
409 |
Academic Level: {academic_level}
|
410 |
Target Length: {word_count} words
|
411 |
Research Areas: {research_areas}
|
412 |
-
|
413 |
Requirements:
|
414 |
- Use the comprehensive research provided
|
415 |
- Write in proper academic style for {academic_level} level
|
@@ -421,7 +342,6 @@ def create_thesis_tasks(topic, document_type, academic_level, research_areas, wo
|
|
421 |
- Avoid AI-like patterns and formal robotic language
|
422 |
- Include methodology, findings, and implications
|
423 |
- Make it engaging and intellectually rigorous
|
424 |
-
|
425 |
Structure:
|
426 |
1. Introduction and background
|
427 |
2. Literature review
|
@@ -429,19 +349,15 @@ def create_thesis_tasks(topic, document_type, academic_level, research_areas, wo
|
|
429 |
4. Analysis and findings
|
430 |
5. Discussion and implications
|
431 |
6. Conclusion and recommendations
|
432 |
-
|
433 |
Important: Write as if you're a human academic expert sharing original research and insights.
|
434 |
""",
|
435 |
agent=thesis_writer,
|
436 |
expected_output="Complete academic thesis document with proper structure and citations",
|
437 |
dependencies=[research_task]
|
438 |
)
|
439 |
-
|
440 |
-
# Task 3: Humanization and Polish
|
441 |
humanization_task = Task(
|
442 |
description=f"""
|
443 |
Polish and humanize the thesis document to make it completely undetectable as AI-written.
|
444 |
-
|
445 |
Requirements:
|
446 |
- Remove any remaining AI patterns
|
447 |
- Improve natural academic flow
|
@@ -453,62 +369,43 @@ def create_thesis_tasks(topic, document_type, academic_level, research_areas, wo
|
|
453 |
- Improve readability without losing sophistication
|
454 |
- Ensure proper citation integration
|
455 |
- Make it sound like expert human academic writing
|
456 |
-
|
457 |
Focus on making it indistinguishable from high-quality human academic writing.
|
458 |
""",
|
459 |
agent=humanization_agent,
|
460 |
expected_output="Final polished human-sounding academic thesis document",
|
461 |
dependencies=[thesis_task]
|
462 |
)
|
463 |
-
|
464 |
return [research_task, thesis_task, humanization_task]
|
465 |
|
466 |
def run_thesis_writer(topic, document_type, academic_level, research_areas, word_count):
|
467 |
-
"""Run the thesis writing process"""
|
468 |
try:
|
469 |
-
# Initialize LLM
|
470 |
llm = BuiltInLLM()
|
471 |
-
|
472 |
-
# Create agents
|
473 |
agents = create_thesis_agents(llm)
|
474 |
-
|
475 |
-
# Create tasks
|
476 |
tasks = create_thesis_tasks(topic, document_type, academic_level, research_areas, word_count, agents)
|
477 |
-
|
478 |
-
# Create crew
|
479 |
crew = Crew(
|
480 |
agents=list(agents),
|
481 |
tasks=tasks,
|
482 |
process=Process.sequential,
|
483 |
verbose=True
|
484 |
)
|
485 |
-
|
486 |
-
# Execute with progress tracking
|
487 |
with st.spinner("Creating comprehensive thesis document with AI agents..."):
|
488 |
result = crew.kickoff()
|
489 |
-
|
490 |
return result
|
491 |
except Exception as e:
|
492 |
st.error(f"Error in thesis writing: {str(e)}")
|
493 |
return None
|
494 |
|
495 |
-
# Streamlit UI
|
496 |
def main():
|
497 |
st.set_page_config(
|
498 |
page_title="Thesis Writer Bot - Academic Document Creator",
|
499 |
page_icon="π",
|
500 |
layout="wide"
|
501 |
)
|
502 |
-
|
503 |
st.title("π Thesis Writer Bot")
|
504 |
st.markdown("*Create sophisticated, human-like thesis and synopsis documents that pass any AI detection*")
|
505 |
-
|
506 |
-
# Sidebar configuration
|
507 |
with st.sidebar:
|
508 |
st.header("βΉοΈ About")
|
509 |
-
|
510 |
st.success("β
Ready to generate your thesis!")
|
511 |
-
|
512 |
st.markdown("---")
|
513 |
st.markdown("### π― What This Tool Does")
|
514 |
st.markdown("- Creates original, human-like thesis documents")
|
@@ -516,7 +413,6 @@ def main():
|
|
516 |
st.markdown("- Generates proper citations and references")
|
517 |
st.markdown("- Ensures content passes AI detection")
|
518 |
st.markdown("- No plagiarism - completely original content")
|
519 |
-
|
520 |
st.markdown("---")
|
521 |
st.markdown("### π Document Types")
|
522 |
st.markdown("- **Thesis**: Complete research thesis")
|
@@ -524,13 +420,11 @@ def main():
|
|
524 |
st.markdown("- **Dissertation**: PhD-level document")
|
525 |
st.markdown("- **Research Paper**: Academic paper")
|
526 |
st.markdown("- **Literature Review**: Comprehensive review")
|
527 |
-
|
528 |
st.markdown("---")
|
529 |
st.markdown("### π Academic Levels")
|
530 |
st.markdown("- **Undergraduate**: Bachelor's level")
|
531 |
st.markdown("- **Masters**: Graduate level")
|
532 |
st.markdown("- **PhD**: Doctoral level")
|
533 |
-
|
534 |
st.markdown("---")
|
535 |
st.markdown("### π₯ Features")
|
536 |
st.markdown("- **No Plagiarism**: Original research")
|
@@ -539,38 +433,25 @@ def main():
|
|
539 |
st.markdown("- **Proper Citations**: Academic references")
|
540 |
st.markdown("- **Research-based**: Credible sources")
|
541 |
st.markdown("- **No Word Limits**: Any length needed")
|
542 |
-
|
543 |
-
# Main content area
|
544 |
col1, col2 = st.columns([1, 1])
|
545 |
-
|
546 |
with col1:
|
547 |
st.header("π Thesis Request")
|
548 |
-
|
549 |
-
# Topic input
|
550 |
topic = st.text_input(
|
551 |
"What is your thesis/synopsis topic?",
|
552 |
placeholder="e.g., Impact of artificial intelligence on healthcare delivery systems"
|
553 |
)
|
554 |
-
|
555 |
-
# Document type selection
|
556 |
document_types = [
|
557 |
"Thesis", "Synopsis", "Dissertation", "Research Paper",
|
558 |
"Literature Review", "Research Proposal", "Academic Report"
|
559 |
]
|
560 |
document_type = st.selectbox("Document Type", document_types)
|
561 |
-
|
562 |
-
# Academic level
|
563 |
academic_levels = ["Undergraduate", "Masters", "PhD"]
|
564 |
academic_level = st.selectbox("Academic Level", academic_levels)
|
565 |
-
|
566 |
-
# Research areas
|
567 |
research_areas = st.text_area(
|
568 |
"Specific Research Areas/Focus (Optional)",
|
569 |
placeholder="e.g., methodology, recent developments, case studies, theoretical frameworks...",
|
570 |
height=80
|
571 |
)
|
572 |
-
|
573 |
-
# Word count (no limit)
|
574 |
word_count = st.number_input(
|
575 |
"Target Word Count",
|
576 |
min_value=1000,
|
@@ -579,25 +460,17 @@ def main():
|
|
579 |
step=500,
|
580 |
help="No strict limit - write as much as needed"
|
581 |
)
|
582 |
-
|
583 |
-
# Additional requirements
|
584 |
additional_requirements = st.text_area(
|
585 |
"Additional Requirements (Optional)",
|
586 |
placeholder="Specific methodology, theoretical framework, case studies, etc...",
|
587 |
height=100
|
588 |
)
|
589 |
-
|
590 |
-
# Generate button
|
591 |
if st.button("π Generate Thesis Document", type="primary", use_container_width=True):
|
592 |
if not topic.strip():
|
593 |
st.error("Please enter a thesis topic!")
|
594 |
else:
|
595 |
-
# Prepare research areas
|
596 |
research_areas_text = research_areas if research_areas.strip() else "general academic research"
|
597 |
-
|
598 |
-
# Run thesis generation
|
599 |
result = run_thesis_writer(topic, document_type, academic_level, research_areas_text, word_count)
|
600 |
-
|
601 |
if result:
|
602 |
st.session_state.generated_thesis = result
|
603 |
st.session_state.thesis_info = {
|
@@ -609,15 +482,11 @@ def main():
|
|
609 |
'requirements': additional_requirements
|
610 |
}
|
611 |
st.success("β
Thesis document generated successfully!")
|
612 |
-
|
613 |
with col2:
|
614 |
st.header("π Generated Thesis")
|
615 |
-
|
616 |
if "generated_thesis" in st.session_state:
|
617 |
thesis = st.session_state.generated_thesis
|
618 |
info = st.session_state.thesis_info
|
619 |
-
|
620 |
-
# Display thesis info
|
621 |
st.subheader("π Document Information")
|
622 |
col_info1, col_info2 = st.columns(2)
|
623 |
with col_info1:
|
@@ -628,21 +497,14 @@ def main():
|
|
628 |
st.metric("Generated Words", len(str(thesis).split()))
|
629 |
st.metric("Research Areas", info['research_areas'][:20] + "..." if len(info['research_areas']) > 20 else info['research_areas'])
|
630 |
st.metric("Quality", "β
Human-like")
|
631 |
-
|
632 |
-
# Display the thesis
|
633 |
st.subheader("π Your Thesis Document")
|
634 |
-
|
635 |
-
# Format the thesis nicely
|
636 |
formatted_thesis = str(thesis)
|
637 |
-
|
638 |
st.text_area(
|
639 |
"Generated Thesis:",
|
640 |
value=formatted_thesis,
|
641 |
height=400,
|
642 |
help="This is your human-like thesis document"
|
643 |
)
|
644 |
-
|
645 |
-
# Download options
|
646 |
col_dl1, col_dl2 = st.columns(2)
|
647 |
with col_dl1:
|
648 |
st.download_button(
|
@@ -651,23 +513,16 @@ def main():
|
|
651 |
file_name=f"{info['topic'].replace(' ', '_')}_{info['type']}.txt",
|
652 |
mime="text/plain"
|
653 |
)
|
654 |
-
|
655 |
with col_dl2:
|
656 |
-
# Create markdown version with academic formatting
|
657 |
markdown_content = f"""# {info['topic']}
|
658 |
-
|
659 |
**Document Type:** {info['type']}
|
660 |
**Academic Level:** {info['level']}
|
661 |
**Research Areas:** {info['research_areas']}
|
662 |
**Word Count:** {len(str(thesis).split())}
|
663 |
**Generated:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
|
664 |
-
|
665 |
---
|
666 |
-
|
667 |
{formatted_thesis}
|
668 |
-
|
669 |
---
|
670 |
-
|
671 |
*This document was generated using advanced AI technology and is designed to be indistinguishable from human academic writing.*
|
672 |
"""
|
673 |
st.download_button(
|
@@ -676,15 +531,10 @@ def main():
|
|
676 |
file_name=f"{info['topic'].replace(' ', '_')}_{info['type']}.md",
|
677 |
mime="text/markdown"
|
678 |
)
|
679 |
-
|
680 |
-
# Document analysis
|
681 |
st.subheader("π Document Analysis")
|
682 |
-
|
683 |
-
# Quick stats
|
684 |
actual_words = len(str(thesis).split())
|
685 |
actual_sentences = len(str(thesis).split('.'))
|
686 |
paragraphs = len(str(thesis).split('\n\n'))
|
687 |
-
|
688 |
col_stats1, col_stats2, col_stats3 = st.columns(3)
|
689 |
with col_stats1:
|
690 |
st.metric("Words", actual_words)
|
@@ -692,21 +542,16 @@ def main():
|
|
692 |
st.metric("Sentences", actual_sentences)
|
693 |
with col_stats3:
|
694 |
st.metric("Paragraphs", paragraphs)
|
695 |
-
|
696 |
-
# Academic quality indicators
|
697 |
st.success("β
Document optimized for academic writing")
|
698 |
st.info("π‘ This thesis is designed to pass AI detection tools and academic scrutiny")
|
699 |
st.warning("β οΈ Remember to review and customize the content for your specific requirements")
|
700 |
-
|
701 |
-
# Remove technical details
|
702 |
st.markdown("---")
|
703 |
st.markdown("### π Privacy & Security")
|
704 |
st.markdown("- Your content is processed securely")
|
705 |
st.markdown("- No data is stored or shared")
|
706 |
st.markdown("- All research is conducted privately")
|
707 |
-
|
708 |
else:
|
709 |
st.info("π Enter a thesis topic and click 'Generate Thesis Document' to create your academic content")
|
710 |
|
711 |
if __name__ == "__main__":
|
712 |
-
main()
|
|
|
2 |
import os
|
3 |
import requests
|
4 |
import hashlib
|
5 |
+
from typing import List, Dict, Any, Optional, Mapping
|
6 |
from datetime import datetime
|
7 |
import json
|
8 |
import re
|
|
|
11 |
import random
|
12 |
import markdown
|
13 |
|
|
|
14 |
from crewai import Agent, Task, Crew, Process
|
15 |
from crewai.tools import BaseTool
|
16 |
from groq import Groq
|
|
|
34 |
description: str = "Conduct comprehensive academic research for thesis/synopsis"
|
35 |
|
36 |
def _run(self, topic: str, research_areas: str) -> str:
|
|
|
37 |
try:
|
38 |
time.sleep(1)
|
|
|
|
|
39 |
search_queries = [
|
40 |
f"{topic} research studies",
|
41 |
f"{topic} academic papers",
|
|
|
43 |
f"{topic} methodology",
|
44 |
f"{topic} literature review"
|
45 |
]
|
|
|
46 |
all_research = []
|
|
|
47 |
with DDGS() as ddgs:
|
48 |
for query in search_queries:
|
49 |
try:
|
|
|
56 |
'url': result.get('href', ''),
|
57 |
'relevance_score': self._calculate_relevance(result.get('body', ''), topic)
|
58 |
})
|
59 |
+
time.sleep(0.5)
|
60 |
+
except Exception:
|
61 |
continue
|
|
|
|
|
62 |
unique_research = self._remove_duplicates(all_research)
|
63 |
unique_research.sort(key=lambda x: x['relevance_score'], reverse=True)
|
64 |
+
return json.dumps(unique_research[:15])
|
|
|
65 |
except Exception as e:
|
66 |
return f"Research failed: {str(e)}"
|
67 |
|
68 |
def _calculate_relevance(self, content: str, topic: str) -> float:
|
|
|
69 |
topic_words = set(topic.lower().split())
|
70 |
content_words = set(content.lower().split())
|
|
|
71 |
if not topic_words or not content_words:
|
72 |
return 0.0
|
|
|
73 |
intersection = topic_words.intersection(content_words)
|
74 |
return len(intersection) / len(topic_words)
|
75 |
|
76 |
def _remove_duplicates(self, research_list: List[Dict]) -> List[Dict]:
|
|
|
77 |
seen_urls = set()
|
78 |
unique_research = []
|
|
|
79 |
for item in research_list:
|
80 |
if item['url'] not in seen_urls:
|
81 |
seen_urls.add(item['url'])
|
82 |
unique_research.append(item)
|
|
|
83 |
return unique_research
|
84 |
|
85 |
class CitationGeneratorTool(BaseTool):
|
|
|
87 |
description: str = "Generate proper academic citations and references"
|
88 |
|
89 |
def _run(self, research_data: str) -> str:
|
|
|
90 |
try:
|
91 |
research_items = json.loads(research_data)
|
92 |
citations = []
|
93 |
+
for i, item in enumerate(research_items[:10]):
|
|
|
|
|
94 |
title = item.get('title', 'Unknown Title')
|
95 |
url = item.get('url', '')
|
|
|
|
|
96 |
domain = url.split('/')[2] if len(url.split('/')) > 2 else 'Unknown'
|
|
|
97 |
citation = {
|
98 |
'id': f"source_{i+1}",
|
99 |
'title': title,
|
|
|
103 |
'in_text': f"({domain}, {datetime.now().year})"
|
104 |
}
|
105 |
citations.append(citation)
|
|
|
106 |
return json.dumps(citations)
|
107 |
except Exception as e:
|
108 |
return f"Citation generation failed: {str(e)}"
|
|
|
112 |
description: str = "Analyze and improve academic writing style"
|
113 |
|
114 |
def _run(self, text: str, academic_level: str) -> str:
|
|
|
115 |
try:
|
|
|
116 |
flesch_score = flesch_reading_ease(text)
|
117 |
fk_grade = flesch_kincaid_grade(text)
|
|
|
|
|
118 |
sentences = text.split('.')
|
119 |
sentence_lengths = [len(s.split()) for s in sentences if s.strip()]
|
120 |
avg_sentence_length = sum(sentence_lengths) / max(len(sentence_lengths), 1)
|
|
|
|
|
121 |
academic_patterns = [
|
122 |
"furthermore", "moreover", "additionally", "consequently",
|
123 |
"therefore", "thus", "hence", "accordingly", "subsequently"
|
124 |
]
|
|
|
125 |
pattern_usage = sum(1 for pattern in academic_patterns if pattern in text.lower())
|
|
|
|
|
126 |
level_guidelines = {
|
127 |
'undergraduate': {
|
128 |
+
'target_flesch': (60, 80),
|
129 |
+
'target_grade': (12, 14),
|
130 |
+
'sentence_length': (15, 25)
|
131 |
},
|
132 |
'masters': {
|
133 |
+
'target_flesch': (50, 70),
|
134 |
+
'target_grade': (14, 16),
|
135 |
+
'sentence_length': (18, 30)
|
136 |
},
|
137 |
'phd': {
|
138 |
+
'target_flesch': (40, 60),
|
139 |
+
'target_grade': (16, 18),
|
140 |
+
'sentence_length': (20, 35)
|
141 |
}
|
142 |
}
|
143 |
+
guidelines = level_guidelines.get(academic_level.lower(), level_guidelines['masters'])
|
|
|
|
|
144 |
analysis = {
|
145 |
'flesch_score': flesch_score,
|
146 |
'fk_grade': fk_grade,
|
|
|
149 |
'target_guidelines': guidelines,
|
150 |
'suggestions': []
|
151 |
}
|
|
|
|
|
152 |
if flesch_score > guidelines['target_flesch'][1]:
|
153 |
analysis['suggestions'].append("Consider more complex sentence structures for academic tone")
|
154 |
if avg_sentence_length < guidelines['sentence_length'][0]:
|
155 |
analysis['suggestions'].append("Use longer, more detailed sentences")
|
156 |
if pattern_usage < 3:
|
157 |
analysis['suggestions'].append("Include more academic transition phrases")
|
|
|
158 |
return json.dumps(analysis)
|
159 |
except Exception as e:
|
160 |
return f"Academic analysis failed: {str(e)}"
|
|
|
164 |
description: str = "Make academic writing sound more human and less AI-like"
|
165 |
|
166 |
def _run(self, text: str) -> str:
|
|
|
167 |
try:
|
|
|
168 |
ai_patterns = [
|
169 |
"It is important to note that",
|
170 |
"This demonstrates that",
|
|
|
175 |
"This implies that",
|
176 |
"It can be concluded that"
|
177 |
]
|
|
|
|
|
178 |
human_alternatives = [
|
179 |
"Notably,",
|
180 |
"This shows",
|
|
|
185 |
"This implies",
|
186 |
"Therefore,"
|
187 |
]
|
|
|
|
|
188 |
humanized_text = text
|
189 |
for ai_pattern, human_alt in zip(ai_patterns, human_alternatives):
|
190 |
humanized_text = humanized_text.replace(ai_pattern, human_alt)
|
|
|
|
|
191 |
variations = [
|
192 |
"Interestingly,",
|
193 |
"Surprisingly,",
|
|
|
195 |
"Significantly,",
|
196 |
"Importantly,"
|
197 |
]
|
|
|
|
|
198 |
sentences = humanized_text.split('.')
|
199 |
+
for i in range(1, len(sentences), 3):
|
200 |
if i < len(sentences) and sentences[i].strip():
|
201 |
variation = random.choice(variations)
|
202 |
sentences[i] = f" {variation} {sentences[i].lstrip()}"
|
|
|
203 |
humanized_text = '.'.join(sentences)
|
|
|
|
|
204 |
personal_insights = [
|
205 |
"Based on the available evidence,",
|
206 |
"From the research findings,",
|
207 |
"Considering the data,",
|
208 |
"In light of these results,"
|
209 |
]
|
|
|
|
|
210 |
if len(sentences) > 5:
|
211 |
insight = random.choice(personal_insights)
|
212 |
sentences[2] = f" {insight} {sentences[2].lstrip()}"
|
|
|
213 |
return '.'.join(sentences)
|
214 |
except Exception as e:
|
215 |
return f"Humanization failed: {str(e)}"
|
216 |
|
|
|
217 |
def rate_limit_handler(max_retries=3, base_delay=2):
|
218 |
def decorator(func):
|
219 |
def wrapper(*args, **kwargs):
|
|
|
232 |
return decorator
|
233 |
|
234 |
# Custom LLM class for CrewAI with built-in API
|
|
|
|
|
|
|
235 |
import litellm
|
236 |
+
from langchain.llms.base import LLM
|
237 |
|
238 |
class BuiltInLLM(LLM):
|
239 |
model_name: str = "groq/llama-3.3-70b-versatile"
|
240 |
+
api_key: str = "API_KEY" # <-- Replace with your actual API key
|
241 |
+
|
242 |
def __init__(self):
|
243 |
super().__init__()
|
|
|
|
|
244 |
os.environ["GROQ_API_KEY"] = self.api_key
|
245 |
litellm.set_verbose = False
|
246 |
|
|
|
250 |
|
251 |
@rate_limit_handler(max_retries=3, base_delay=2)
|
252 |
def _call(self, prompt: str, stop: Optional[List[str]] = None, **kwargs) -> str:
|
|
|
253 |
try:
|
|
|
254 |
if len(prompt.split()) > 1500:
|
255 |
words = prompt.split()
|
256 |
prompt = ' '.join(words[:1500]) + "..."
|
|
|
257 |
response = litellm.completion(
|
258 |
model=self.model_name,
|
259 |
messages=[
|
|
|
261 |
{"role": "user", "content": prompt}
|
262 |
],
|
263 |
max_tokens=2500,
|
264 |
+
temperature=0.6,
|
265 |
top_p=0.9,
|
266 |
api_key=self.api_key
|
267 |
)
|
|
|
268 |
time.sleep(2)
|
269 |
return response.choices[0].message.content
|
270 |
except Exception as e:
|
|
|
275 |
def _identifying_params(self) -> Mapping[str, Any]:
|
276 |
return {"model_name": self.model_name}
|
277 |
|
|
|
278 |
def create_thesis_agents(llm):
|
|
|
|
|
|
|
279 |
research_agent = Agent(
|
280 |
role="Academic Research Specialist",
|
281 |
goal="Conduct comprehensive academic research and gather credible sources",
|
|
|
285 |
allow_delegation=False,
|
286 |
llm=llm
|
287 |
)
|
|
|
|
|
288 |
thesis_writer = Agent(
|
289 |
role="Academic Thesis Writer",
|
290 |
goal="Write sophisticated thesis documents that sound completely human-written",
|
|
|
294 |
allow_delegation=False,
|
295 |
llm=llm
|
296 |
)
|
|
|
|
|
297 |
humanization_agent = Agent(
|
298 |
role="Academic Writing Humanizer",
|
299 |
goal="Make academic writing sound completely human and undetectable",
|
|
|
303 |
allow_delegation=False,
|
304 |
llm=llm
|
305 |
)
|
|
|
306 |
return research_agent, thesis_writer, humanization_agent
|
307 |
|
308 |
def create_thesis_tasks(topic, document_type, academic_level, research_areas, word_count, agents):
|
|
|
309 |
research_agent, thesis_writer, humanization_agent = agents
|
|
|
|
|
310 |
research_task = Task(
|
311 |
description=f"""
|
312 |
Conduct comprehensive academic research for a {document_type} on "{topic}".
|
|
|
313 |
Research Areas: {research_areas}
|
314 |
Academic Level: {academic_level}
|
315 |
Target Length: {word_count} words
|
|
|
316 |
Requirements:
|
317 |
- Find 10-15 credible academic sources
|
318 |
- Gather recent research and developments
|
|
|
320 |
- Note different perspectives and debates
|
321 |
- Focus on peer-reviewed and scholarly sources
|
322 |
- Include both theoretical and practical aspects
|
|
|
323 |
Provide a detailed research summary with key findings, methodologies, and source analysis.
|
324 |
""",
|
325 |
agent=research_agent,
|
326 |
expected_output="Comprehensive research summary with credible sources and key insights"
|
327 |
)
|
|
|
|
|
328 |
thesis_task = Task(
|
329 |
description=f"""
|
330 |
Write a complete {document_type} on "{topic}" that sounds completely human-written.
|
|
|
331 |
Academic Level: {academic_level}
|
332 |
Target Length: {word_count} words
|
333 |
Research Areas: {research_areas}
|
|
|
334 |
Requirements:
|
335 |
- Use the comprehensive research provided
|
336 |
- Write in proper academic style for {academic_level} level
|
|
|
342 |
- Avoid AI-like patterns and formal robotic language
|
343 |
- Include methodology, findings, and implications
|
344 |
- Make it engaging and intellectually rigorous
|
|
|
345 |
Structure:
|
346 |
1. Introduction and background
|
347 |
2. Literature review
|
|
|
349 |
4. Analysis and findings
|
350 |
5. Discussion and implications
|
351 |
6. Conclusion and recommendations
|
|
|
352 |
Important: Write as if you're a human academic expert sharing original research and insights.
|
353 |
""",
|
354 |
agent=thesis_writer,
|
355 |
expected_output="Complete academic thesis document with proper structure and citations",
|
356 |
dependencies=[research_task]
|
357 |
)
|
|
|
|
|
358 |
humanization_task = Task(
|
359 |
description=f"""
|
360 |
Polish and humanize the thesis document to make it completely undetectable as AI-written.
|
|
|
361 |
Requirements:
|
362 |
- Remove any remaining AI patterns
|
363 |
- Improve natural academic flow
|
|
|
369 |
- Improve readability without losing sophistication
|
370 |
- Ensure proper citation integration
|
371 |
- Make it sound like expert human academic writing
|
|
|
372 |
Focus on making it indistinguishable from high-quality human academic writing.
|
373 |
""",
|
374 |
agent=humanization_agent,
|
375 |
expected_output="Final polished human-sounding academic thesis document",
|
376 |
dependencies=[thesis_task]
|
377 |
)
|
|
|
378 |
return [research_task, thesis_task, humanization_task]
|
379 |
|
380 |
def run_thesis_writer(topic, document_type, academic_level, research_areas, word_count):
|
|
|
381 |
try:
|
|
|
382 |
llm = BuiltInLLM()
|
|
|
|
|
383 |
agents = create_thesis_agents(llm)
|
|
|
|
|
384 |
tasks = create_thesis_tasks(topic, document_type, academic_level, research_areas, word_count, agents)
|
|
|
|
|
385 |
crew = Crew(
|
386 |
agents=list(agents),
|
387 |
tasks=tasks,
|
388 |
process=Process.sequential,
|
389 |
verbose=True
|
390 |
)
|
|
|
|
|
391 |
with st.spinner("Creating comprehensive thesis document with AI agents..."):
|
392 |
result = crew.kickoff()
|
|
|
393 |
return result
|
394 |
except Exception as e:
|
395 |
st.error(f"Error in thesis writing: {str(e)}")
|
396 |
return None
|
397 |
|
|
|
398 |
def main():
|
399 |
st.set_page_config(
|
400 |
page_title="Thesis Writer Bot - Academic Document Creator",
|
401 |
page_icon="π",
|
402 |
layout="wide"
|
403 |
)
|
|
|
404 |
st.title("π Thesis Writer Bot")
|
405 |
st.markdown("*Create sophisticated, human-like thesis and synopsis documents that pass any AI detection*")
|
|
|
|
|
406 |
with st.sidebar:
|
407 |
st.header("βΉοΈ About")
|
|
|
408 |
st.success("β
Ready to generate your thesis!")
|
|
|
409 |
st.markdown("---")
|
410 |
st.markdown("### π― What This Tool Does")
|
411 |
st.markdown("- Creates original, human-like thesis documents")
|
|
|
413 |
st.markdown("- Generates proper citations and references")
|
414 |
st.markdown("- Ensures content passes AI detection")
|
415 |
st.markdown("- No plagiarism - completely original content")
|
|
|
416 |
st.markdown("---")
|
417 |
st.markdown("### π Document Types")
|
418 |
st.markdown("- **Thesis**: Complete research thesis")
|
|
|
420 |
st.markdown("- **Dissertation**: PhD-level document")
|
421 |
st.markdown("- **Research Paper**: Academic paper")
|
422 |
st.markdown("- **Literature Review**: Comprehensive review")
|
|
|
423 |
st.markdown("---")
|
424 |
st.markdown("### π Academic Levels")
|
425 |
st.markdown("- **Undergraduate**: Bachelor's level")
|
426 |
st.markdown("- **Masters**: Graduate level")
|
427 |
st.markdown("- **PhD**: Doctoral level")
|
|
|
428 |
st.markdown("---")
|
429 |
st.markdown("### π₯ Features")
|
430 |
st.markdown("- **No Plagiarism**: Original research")
|
|
|
433 |
st.markdown("- **Proper Citations**: Academic references")
|
434 |
st.markdown("- **Research-based**: Credible sources")
|
435 |
st.markdown("- **No Word Limits**: Any length needed")
|
|
|
|
|
436 |
col1, col2 = st.columns([1, 1])
|
|
|
437 |
with col1:
|
438 |
st.header("π Thesis Request")
|
|
|
|
|
439 |
topic = st.text_input(
|
440 |
"What is your thesis/synopsis topic?",
|
441 |
placeholder="e.g., Impact of artificial intelligence on healthcare delivery systems"
|
442 |
)
|
|
|
|
|
443 |
document_types = [
|
444 |
"Thesis", "Synopsis", "Dissertation", "Research Paper",
|
445 |
"Literature Review", "Research Proposal", "Academic Report"
|
446 |
]
|
447 |
document_type = st.selectbox("Document Type", document_types)
|
|
|
|
|
448 |
academic_levels = ["Undergraduate", "Masters", "PhD"]
|
449 |
academic_level = st.selectbox("Academic Level", academic_levels)
|
|
|
|
|
450 |
research_areas = st.text_area(
|
451 |
"Specific Research Areas/Focus (Optional)",
|
452 |
placeholder="e.g., methodology, recent developments, case studies, theoretical frameworks...",
|
453 |
height=80
|
454 |
)
|
|
|
|
|
455 |
word_count = st.number_input(
|
456 |
"Target Word Count",
|
457 |
min_value=1000,
|
|
|
460 |
step=500,
|
461 |
help="No strict limit - write as much as needed"
|
462 |
)
|
|
|
|
|
463 |
additional_requirements = st.text_area(
|
464 |
"Additional Requirements (Optional)",
|
465 |
placeholder="Specific methodology, theoretical framework, case studies, etc...",
|
466 |
height=100
|
467 |
)
|
|
|
|
|
468 |
if st.button("π Generate Thesis Document", type="primary", use_container_width=True):
|
469 |
if not topic.strip():
|
470 |
st.error("Please enter a thesis topic!")
|
471 |
else:
|
|
|
472 |
research_areas_text = research_areas if research_areas.strip() else "general academic research"
|
|
|
|
|
473 |
result = run_thesis_writer(topic, document_type, academic_level, research_areas_text, word_count)
|
|
|
474 |
if result:
|
475 |
st.session_state.generated_thesis = result
|
476 |
st.session_state.thesis_info = {
|
|
|
482 |
'requirements': additional_requirements
|
483 |
}
|
484 |
st.success("β
Thesis document generated successfully!")
|
|
|
485 |
with col2:
|
486 |
st.header("π Generated Thesis")
|
|
|
487 |
if "generated_thesis" in st.session_state:
|
488 |
thesis = st.session_state.generated_thesis
|
489 |
info = st.session_state.thesis_info
|
|
|
|
|
490 |
st.subheader("π Document Information")
|
491 |
col_info1, col_info2 = st.columns(2)
|
492 |
with col_info1:
|
|
|
497 |
st.metric("Generated Words", len(str(thesis).split()))
|
498 |
st.metric("Research Areas", info['research_areas'][:20] + "..." if len(info['research_areas']) > 20 else info['research_areas'])
|
499 |
st.metric("Quality", "β
Human-like")
|
|
|
|
|
500 |
st.subheader("π Your Thesis Document")
|
|
|
|
|
501 |
formatted_thesis = str(thesis)
|
|
|
502 |
st.text_area(
|
503 |
"Generated Thesis:",
|
504 |
value=formatted_thesis,
|
505 |
height=400,
|
506 |
help="This is your human-like thesis document"
|
507 |
)
|
|
|
|
|
508 |
col_dl1, col_dl2 = st.columns(2)
|
509 |
with col_dl1:
|
510 |
st.download_button(
|
|
|
513 |
file_name=f"{info['topic'].replace(' ', '_')}_{info['type']}.txt",
|
514 |
mime="text/plain"
|
515 |
)
|
|
|
516 |
with col_dl2:
|
|
|
517 |
markdown_content = f"""# {info['topic']}
|
|
|
518 |
**Document Type:** {info['type']}
|
519 |
**Academic Level:** {info['level']}
|
520 |
**Research Areas:** {info['research_areas']}
|
521 |
**Word Count:** {len(str(thesis).split())}
|
522 |
**Generated:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
|
|
|
523 |
---
|
|
|
524 |
{formatted_thesis}
|
|
|
525 |
---
|
|
|
526 |
*This document was generated using advanced AI technology and is designed to be indistinguishable from human academic writing.*
|
527 |
"""
|
528 |
st.download_button(
|
|
|
531 |
file_name=f"{info['topic'].replace(' ', '_')}_{info['type']}.md",
|
532 |
mime="text/markdown"
|
533 |
)
|
|
|
|
|
534 |
st.subheader("π Document Analysis")
|
|
|
|
|
535 |
actual_words = len(str(thesis).split())
|
536 |
actual_sentences = len(str(thesis).split('.'))
|
537 |
paragraphs = len(str(thesis).split('\n\n'))
|
|
|
538 |
col_stats1, col_stats2, col_stats3 = st.columns(3)
|
539 |
with col_stats1:
|
540 |
st.metric("Words", actual_words)
|
|
|
542 |
st.metric("Sentences", actual_sentences)
|
543 |
with col_stats3:
|
544 |
st.metric("Paragraphs", paragraphs)
|
|
|
|
|
545 |
st.success("β
Document optimized for academic writing")
|
546 |
st.info("π‘ This thesis is designed to pass AI detection tools and academic scrutiny")
|
547 |
st.warning("β οΈ Remember to review and customize the content for your specific requirements")
|
|
|
|
|
548 |
st.markdown("---")
|
549 |
st.markdown("### π Privacy & Security")
|
550 |
st.markdown("- Your content is processed securely")
|
551 |
st.markdown("- No data is stored or shared")
|
552 |
st.markdown("- All research is conducted privately")
|
|
|
553 |
else:
|
554 |
st.info("π Enter a thesis topic and click 'Generate Thesis Document' to create your academic content")
|
555 |
|
556 |
if __name__ == "__main__":
|
557 |
+
main()
|