File size: 2,475 Bytes
f03ee05 73dfaab f03ee05 277e947 f03ee05 73dfaab f03ee05 277e947 f03ee05 73dfaab 896d88b 73dfaab f03ee05 d536a72 f03ee05 d536a72 5b98a9c 8ea577e 5b98a9c ce13d97 54556b9 f03ee05 f95a7f7 f03ee05 742d18f f03ee05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import os
import time
import requests
import streamlit as st
API_URL = "https://api-inference.huggingface.co/models/pere/nb-nn-translation"
def translate(text, wait=True):
headers = {"Authorization": f"Bearer {os.environ['BEARER']}"}
payload = {
"inputs": text,
"options": {
"wait_for_model": not wait
}
}
response = requests.post(API_URL, headers=headers, json=payload)
json_response = response.json()
if (isinstance(json_response, dict)
and "error" in json_response
and "estimated_time" in json_response):
st.write(json_response)
if wait:
with st.spinner(json_response["error"]):
bar = st.progress(0)
time_to_load = int(json_response["estimated_time"]) + 1
for progress in range(time_to_load):
bar.progress(progress / time_to_load)
time.sleep(1)
bar.empty()
return translate(text, wait=False)
else:
return "We could not load the model"
elif (isinstance(json_response, list)
and "translation_text" in json_response[0]):
return json_response[0]["translation_text"]
else:
return f"Oops, something went wrong: {str(json_response)}"
st.set_page_config(
page_title='Norwegian Bokmål to Nynorsk',
page_icon='translator-icon.png',
)
st.title("Bokmål ⇔ Nynorsk")
st.sidebar.write("""
Here are some sample texts in Norwegian Bokmål and Norwegian Nynorsk that you can try to translate. They are here presented in pairs (Bokmål, Nynorsk, Bokmål...). This way you can also see a suggested translation of the text. As you can see there are a lot of similarities between the languages. Since there also are some grammatical differences, the translation task can not be solved by dictionary replacements. A finetuned model on top of a pretrained t5-base from a balanced corpus, seem to solve the task with a SACREBLEU-score of 88.17.
""")
masked_texts = [
"Min tekst",
"Din tekst"
]
input_text = st.sidebar.selectbox("Select a Text", options=masked_texts)
text = st.text_area("Enter text:",
input_text,
height=None,
max_chars=None,
key=None,
help="Enter your text here",
)
if st.button('Translate'):
if str(text).strip() == "":
st.warning('Please **enter text** for translation')
else:
st.info(str(translate(text)))
|