Spaces:
Runtime error
Runtime error
| import torch | |
| from PIL import Image | |
| import gradio as gr | |
| import spaces | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| import os | |
| from threading import Thread | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| MODEL_ID = "Nechba/Coin-Generative-Recognition" | |
| TITLE = f'<br><center>🚀 Coin Generative Recognition</a></center>' | |
| DESCRIPTION = f""" | |
| <center> | |
| <p> | |
| A Space for Vision/Multimodal | |
| <br> | |
| <br> | |
| ✨ Tips: Send messages or upload multiple IMAGES at a time. | |
| <br> | |
| ✨ Tips: Please increase MAX LENGTH when dealing with files. | |
| <br> | |
| 🤙 Supported Format: png, jpg, webp | |
| <br> | |
| 🙇♂️ May be rebuilding from time to time. | |
| </p> | |
| </center>""" | |
| CSS = """ | |
| h1 { | |
| text-align: center; | |
| display: block; | |
| } | |
| img { | |
| max-width: 100%; /* Make sure images are not wider than their container */ | |
| height: auto; /* Maintain aspect ratio */ | |
| max-height: 300px; /* Limit the height of images */ | |
| } | |
| """ | |
| import os | |
| # Directory where the model and tokenizer will be saved | |
| # Load model directly | |
| from transformers import AutoModel | |
| model = AutoModel.from_pretrained("Nechba/Coin-Generative-Recognition", trust_remote_code=True).to(0) | |
| # model = AutoModelForCausalLM.from_pretrained( | |
| # MODEL_ID, | |
| # torch_dtype=torch.bfloat16, | |
| # low_cpu_mem_usage=True, | |
| # trust_remote_code=True | |
| # ).to(0) | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) | |
| model.eval() | |
| def merge_images(paths): | |
| images = [Image.open(path).convert('RGB') for path in paths] | |
| widths, heights = zip(*(i.size for i in images)) | |
| total_width = sum(widths) | |
| max_height = max(heights) | |
| new_im = Image.new('RGB', (total_width, max_height)) | |
| x_offset = 0 | |
| for im in images: | |
| new_im.paste(im, (x_offset,0)) | |
| x_offset += im.width | |
| return new_im | |
| def mode_load(paths): | |
| if all(path.lower().endswith(('png', 'jpg', 'jpeg', 'webp')) for path in paths): | |
| content = merge_images(paths) | |
| choice = "image" | |
| return choice, content | |
| else: | |
| raise gr.Error("Unsupported file types. Please upload only images.") | |
| def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float): | |
| conversation = [] | |
| if message["files"]: | |
| choice, contents = mode_load(message["files"]) | |
| conversation.append({"role": "user", "image": contents, "content": message['text']}) | |
| elif message["files"] and len(message["files"]) == 1: | |
| content = Image.open( message["files"][-1]).convert('RGB') | |
| choice = "image" | |
| conversation.append({"role": "user", "image": content, "content": message['text']}) | |
| else: | |
| raise gr.Error("Please upload one or more images.") | |
| input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| max_length=max_length, | |
| streamer=streamer, | |
| do_sample=True, | |
| top_p=top_p, | |
| top_k=top_k, | |
| temperature=temperature, | |
| repetition_penalty=penalty, | |
| eos_token_id=[151329, 151336, 151338], | |
| ) | |
| gen_kwargs = {**input_ids, **generate_kwargs} | |
| with torch.no_grad(): | |
| thread = Thread(target=model.generate, kwargs=gen_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| yield buffer | |
| chatbot = gr.Chatbot(label="Chatbox", height=600, placeholder=DESCRIPTION) | |
| chat_input = gr.MultimodalTextbox( | |
| interactive=True, | |
| placeholder="Enter message or upload images...", | |
| show_label=False, | |
| file_count="multiple", | |
| ) | |
| EXAMPLES = [ | |
| [{"text": "Give me Country,Denomination and year as json format.", "files": ["./135_back.jpg", "./135_front.jpg"]}], | |
| [{"text": "Give me Country,Denomination and year as json format.", "files": ["./141_back.jpg","./141_front.jpg"]}] | |
| ] | |
| with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo: | |
| gr.HTML(TITLE) | |
| gr.ChatInterface( | |
| fn=stream_chat, | |
| multimodal=True, | |
| textbox=chat_input, | |
| chatbot=chatbot, | |
| fill_height=True, | |
| additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
| additional_inputs=[ | |
| gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| step=0.1, | |
| value=0.8, | |
| label="Temperature", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=1024, | |
| maximum=8192, | |
| step=1, | |
| value=4096, | |
| label="Max Length", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=1.0, | |
| label="top_p", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=20, | |
| step=1, | |
| value=10, | |
| label="top_k", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=0.0, | |
| maximum=2.0, | |
| step=0.1, | |
| value=1.0, | |
| label="Repetition penalty", | |
| render=False, | |
| ), | |
| ], | |
| ), | |
| gr.Examples(EXAMPLES, [chat_input]) | |
| if __name__ == "__main__": | |
| demo.queue(api_open=False).launch(show_api=False, share=False) | |