Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import io | |
from pyomo.environ import ConcreteModel, Var, Objective, Constraint, SolverFactory, NonNegativeReals, RangeSet, Param, minimize, value, Reals,Set | |
from pyomo.environ import * | |
def get_output(df, df1, df2): | |
df.fillna(0, inplace=True) | |
df1.fillna(0, inplace=True) | |
df2.fillna(0, inplace=True) | |
n = df['ID projet'].nunique() | |
task = df.groupby('ID projet').count()['Nom projet'] | |
project = df.groupby('ID projet').count().index | |
J_sizes = {i: task[i-1] for i in range(1, n+1)} | |
Months = ['Janvier', 'Février', 'Mars', 'Avril', 'Mai', 'Juin', 'Juillet', 'Août', 'Septembre', 'Octobre', 'Novembre', 'Décembre'] | |
months = 12 # Number of months in set M | |
H_data = {(i, j, month): df.loc[df['ID projet'] == project[i-1]].loc[df.loc[df['ID projet'] == project[i-1]].index[j-1], Months[month-1]] for i in range(1, n + 1) for j in range(1, J_sizes[i] + 1) for month in range(1, months + 1)} | |
df1.fillna(0, inplace=True) | |
h = df1['Ressource'].nunique() | |
A_data = {(i, j, k): int(df.loc[df['ID projet'] == project[i-1]].loc[df.loc[df['ID projet'] == project[i-1]].index[j-1], 'Equipe'] == df1.loc[df1.index[k-1], 'Equipe']) for i in range(1, n + 1) for j in range(1, J_sizes[i] + 1) for k in range(1, h + 1)} | |
per = [0.08, 0.08, 0.09, 0.09, 0.08, 0.09, 0.07, 0.07, 0.09, 0.09, 0.09, 0.08] | |
C_data = {(k, month): df1.loc[df1.index[k-1], 'Capacité'] * per[month-1] for k in range(1, h + 1) for month in range(1, months + 1)} | |
p_data = {i: df2.loc[df2.index[i-1], 'Pond'] for i in range(1, n + 1)} | |
# Define model | |
model = ConcreteModel() | |
# Sets | |
model.I = RangeSet(1, n) | |
model.M = RangeSet(1, months) | |
model.K = RangeSet(1, h) | |
model.J = Set(model.I, initialize=lambda model, i: RangeSet(1, J_sizes[i])) | |
# Flatten J for use in parameter definition | |
flat_J = [(i, j) for i in model.I for j in model.J[i]] | |
# Parameters | |
model.H = Param(flat_J, model.M, initialize=H_data) | |
model.A = Param(flat_J, model.K, initialize=A_data) | |
model.C = Param(model.K, model.M, initialize=C_data) | |
model.p = Param(model.I, initialize=p_data) | |
# Variables | |
model.x = Var(flat_J, model.K, model.M, domain=NonNegativeReals) | |
model.y = Var(flat_J, model.K, domain=Binary) | |
model.s = Var(flat_J, domain=NonNegativeReals) | |
# Objective function | |
def objective_rule(model): | |
return sum(model.p[i] * model.s[i, j] for i in model.I for j in model.J[i]) | |
model.objective = Objective(rule=objective_rule, sense=minimize) | |
# Capacity constraint | |
def capacity_constraint(model, k, month): | |
return sum(model.x[i, j, k, month] for (i, j) in flat_J) <= model.C[k, month] | |
model.capacity_constraint = Constraint(model.K, model.M, rule=capacity_constraint) | |
# Constraint to ensure each task is assigned to exactly one resource | |
def single_resource_constraint(model, i, j): | |
return sum(model.y[i, j, k] for k in model.K) == 1 | |
model.single_resource_constraint = Constraint(flat_J, rule=single_resource_constraint) | |
# Linking x and y | |
def linking_constraint(model, i, j, k, month): | |
return model.x[i, j, k, month] <= 1000 * model.y[i, j, k] | |
model.linking_constraint = Constraint(flat_J, model.K, model.M, rule=linking_constraint) | |
# Ensure glissement plus capacité allouée égale à planifiée | |
def glissement_constraint(model, i, j): | |
return model.s[i, j] >= sum(model.H[i, j, m] for m in model.M) - sum(model.x[i, j, k, m] * model.A[i, j, k] for k in model.K for m in model.M) | |
model.glissement_constraint = Constraint(flat_J, rule=glissement_constraint) | |
# Ensure glissement is non-negative | |
def non_negative_glissement_constraint(model, i, j): | |
return model.s[i, j] >= 0 | |
model.non_negative_glissement_constraint = Constraint(flat_J, rule=non_negative_glissement_constraint) | |
# Ensure x is less than or equal to H | |
def x_less_than_H_constraint(model, i, j, k, m): | |
return model.x[i, j, k, m] <= model.H[i, j, m] | |
model.x_less_than_H_constraint = Constraint(flat_J, model.K, model.M, rule=x_less_than_H_constraint) | |
# Solver | |
solver = SolverFactory('glpk') | |
result = solver.solve(model, tee=True) | |
Months = ['Janvier', 'Février', 'Mars', 'Avril', 'Mai', 'Juin', 'Juillet', 'Août', 'Septembre', 'Octobre', 'Novembre', 'Décembre'] | |
results = [] | |
for (i, j) in flat_J: | |
for k in model.K: | |
result = {} | |
result['i'] = project[i-1] | |
result['j'] = j | |
result['k'] = df1.loc[df1.index[k-1], 'Ressource'] | |
for month in model.M: | |
result[Months[month-1]] = value(model.x[i, j, k, month]) | |
results.append(result) | |
output_df = pd.DataFrame(results) | |
df_finall = output_df.loc[output_df[Months].sum(axis=1) > 0] | |
return df_finall | |
def main(): | |
st.title("XLSX Upload and Download") | |
# File upload section | |
uploaded_file = st.file_uploader("Choose an XLSX file to upload", type="xlsx") | |
if uploaded_file is not None: | |
# Load the uploaded file into a Pandas DataFrame | |
df = pd.read_excel(uploaded_file, sheet_name='PMC1') | |
df1 = pd.read_excel(uploaded_file, sheet_name ='Base de ressource1') | |
df2 = pd.read_excel(uploaded_file, sheet_name ='Priorisation') | |
df_out = get_output(df,df1,df2) | |
# Display the uploaded DataFrame | |
st.write("Estimation") | |
st.dataframe(df_out) | |
# Download section | |
excel_file = io.BytesIO() | |
df_out.to_excel(excel_file, index=False) | |
st.download_button( | |
label="Download XLSX", | |
data=excel_file.getvalue(), | |
file_name="downloaded_file.xlsx", | |
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", | |
) | |
if __name__ == "__main__": | |
main() |