Spaces:
Sleeping
Sleeping
add app
Browse files- app.py +134 -0
- dockerfile +24 -0
- requirments.txt +3 -0
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import io
|
4 |
+
from pyomo.environ import ConcreteModel, Var, Objective, Constraint, SolverFactory, NonNegativeReals, RangeSet, Param, minimize, value, Reals,Set
|
5 |
+
|
6 |
+
def get_output(df,df1,df2):
|
7 |
+
n = df['ID projet'].nunique()
|
8 |
+
task = df.groupby('ID projet').count()['Nom projet']
|
9 |
+
project =df.groupby('ID projet').count().index
|
10 |
+
|
11 |
+
J_sizes = {i:task[i-1] for i in range(1,n+1)}
|
12 |
+
|
13 |
+
Months = ['Janvier', 'F茅vrier', 'Mars', 'Avril', 'Mai', 'Juin', 'Juillet', 'Ao没t', 'Septembre', 'Octobre', 'Novembre', 'D茅cembre']
|
14 |
+
months = 12 # Number of months in set M
|
15 |
+
H_data = {(i, j, month): df.loc[df['ID projet']==project[i-1]].loc[df.loc[df['ID projet']==project[i-1]].index[j-1],Months[month-1]] for i in range(1, n + 1) for j in range(1, J_sizes[i] + 1) for month in range(1, months + 1)}
|
16 |
+
|
17 |
+
df1.fillna(0, inplace=True)
|
18 |
+
|
19 |
+
h = df1['Ressource'].nunique()
|
20 |
+
A_data = {(i, j, k): int(df.loc[df['ID projet']==project[i-1]].loc[df.loc[df['ID projet']==project[i-1]].index[j-1], 'Equipe'] == df1.loc[df1.index[k-1],'Equipe']) for i in range(1, n + 1) for j in range(1, J_sizes[i] + 1) for k in range(1, h + 1)}
|
21 |
+
per= [0.08,0.08,0.09,0.09,0.08,0.09,0.07,0.07,0.09,0.09,0.09,0.08]
|
22 |
+
C_data = {(k, month): df1.loc[df1.index[k-1],'Capacit茅']*per[month-1] for k in range(1, h + 1) for month in range(1, months + 1)}
|
23 |
+
|
24 |
+
p_data = {i:df2.loc[df2.index[i-1],'Pond'] for i in range(1, n + 1)}
|
25 |
+
|
26 |
+
# Define model
|
27 |
+
model = ConcreteModel()
|
28 |
+
|
29 |
+
# Sets
|
30 |
+
model.I = RangeSet(1, n)
|
31 |
+
model.M = RangeSet(1, months)
|
32 |
+
model.K = RangeSet(1, h)
|
33 |
+
model.J = Set(model.I, initialize=lambda model, i: RangeSet(1, J_sizes[i]))
|
34 |
+
|
35 |
+
# Flatten J for use in parameter definition
|
36 |
+
flat_J = [(i, j) for i in model.I for j in model.J[i]]
|
37 |
+
flat_J_pairs = [(i, j, l) for i in model.I for j in model.J[i] for l in model.J[i] if j != l]
|
38 |
+
|
39 |
+
# Parameters
|
40 |
+
model.H = Param(flat_J, model.M, initialize=H_data)
|
41 |
+
model.A = Param(flat_J, model.K, initialize=A_data)
|
42 |
+
model.C = Param(model.K, model.M, initialize=C_data)
|
43 |
+
model.p = Param(model.I, initialize=p_data)
|
44 |
+
|
45 |
+
# Variables
|
46 |
+
model.x = Var(flat_J, model.K, model.M, domain=NonNegativeReals)
|
47 |
+
|
48 |
+
# Auxiliary variables for max(0, ...)
|
49 |
+
model.max_0_terms = Var(flat_J, model.M, domain=NonNegativeReals)
|
50 |
+
model.max_0_terms_2 = Var(flat_J_pairs, model.M, domain=NonNegativeReals)
|
51 |
+
|
52 |
+
# Objective function
|
53 |
+
def objective_rule(model):
|
54 |
+
return sum(model.p[i] * (
|
55 |
+
sum(model.max_0_terms[i, j, month] for j in model.J[i]) +
|
56 |
+
sum(model.max_0_terms_2[i, j, l, month] for j in model.J[i] for l in model.J[i] if l != j)
|
57 |
+
) for i in model.I for month in model.M)
|
58 |
+
model.objective = Objective(rule=objective_rule, sense=minimize)
|
59 |
+
|
60 |
+
# Constraints to handle max(0, ...)
|
61 |
+
def max_0_term_constraint_1(model, i, j, month):
|
62 |
+
return model.max_0_terms[i, j, month] >= model.H[i, j, month] - sum(model.A[i, j, k] * model.x[i, j, k, month] for k in model.K)
|
63 |
+
model.max_0_term_constraint_1 = Constraint(flat_J, model.M, rule=max_0_term_constraint_1)
|
64 |
+
|
65 |
+
def max_0_term_constraint_2(model, i, j, month):
|
66 |
+
return model.max_0_terms[i, j, month] >= 0
|
67 |
+
model.max_0_term_constraint_2 = Constraint(flat_J, model.M, rule=max_0_term_constraint_2)
|
68 |
+
|
69 |
+
def max_0_term_2_constraint_1(model, i, j, l, month):
|
70 |
+
return model.max_0_terms_2[i, j, l, month] >= model.H[i, l, month] - sum(model.A[i, l, k] * model.x[i, l, k, month] for k in model.K)
|
71 |
+
model.max_0_term_2_constraint_1 = Constraint(flat_J_pairs, model.M, rule=max_0_term_2_constraint_1)
|
72 |
+
|
73 |
+
def max_0_term_2_constraint_2(model, i, j, l, month):
|
74 |
+
return model.max_0_terms_2[i, j, l, month] >= 0
|
75 |
+
model.max_0_term_2_constraint_2 = Constraint(flat_J_pairs, model.M, rule=max_0_term_2_constraint_2)
|
76 |
+
|
77 |
+
# Capacity constraint
|
78 |
+
def capacity_constraint(model, k, month):
|
79 |
+
return sum(model.x[i, j, k, month] for (i, j) in flat_J) <= model.C[k, month]
|
80 |
+
model.capacity_constraint = Constraint(model.K, model.M, rule=capacity_constraint)
|
81 |
+
|
82 |
+
# Solver
|
83 |
+
solver = SolverFactory('glpk') # Example using GLPK
|
84 |
+
result = solver.solve(model, tee=True)
|
85 |
+
|
86 |
+
Months= ['Janvier', 'F茅vrier', 'Mars', 'Avril', 'Mai', 'Juin', 'Juillet', 'Ao没t', 'Septembre', 'Octobre', 'Novembre', 'D茅cembre']
|
87 |
+
results = []
|
88 |
+
for (i, j) in flat_J:
|
89 |
+
for k in model.K:
|
90 |
+
result = {}
|
91 |
+
result['i']=project[i-1]
|
92 |
+
result['j']= j
|
93 |
+
result['k']=df1.loc[df1.index[k-1],'Ressource']
|
94 |
+
for month in model.M:
|
95 |
+
|
96 |
+
result[Months[month-1]] = value(model.x[i, j, k, month])
|
97 |
+
results.append(result)
|
98 |
+
|
99 |
+
|
100 |
+
output_df = pd.DataFrame(results)
|
101 |
+
return output_df
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
def main():
|
106 |
+
st.title("XLSX Upload and Download")
|
107 |
+
|
108 |
+
# File upload section
|
109 |
+
uploaded_file = st.file_uploader("Choose an XLSX file to upload", type="xlsx")
|
110 |
+
|
111 |
+
if uploaded_file is not None:
|
112 |
+
# Load the uploaded file into a Pandas DataFrame
|
113 |
+
df = pd.read_excel(uploaded_file, sheet_name='PMC1')
|
114 |
+
df1 = pd.read_excel(uploaded_file, sheet_name ='Base de ressource1')
|
115 |
+
df2 = pd.read_excel(uploaded_file, sheet_name ='Priorisation')
|
116 |
+
|
117 |
+
df_out = get_output(df,df1,df2)
|
118 |
+
# Display the uploaded DataFrame
|
119 |
+
st.write("Estimation")
|
120 |
+
st.dataframe(df_out)
|
121 |
+
|
122 |
+
# Download section
|
123 |
+
excel_file = io.BytesIO()
|
124 |
+
df_out.to_excel(excel_file, index=False)
|
125 |
+
|
126 |
+
st.download_button(
|
127 |
+
label="Download XLSX",
|
128 |
+
data=excel_file.getvalue(),
|
129 |
+
file_name="downloaded_file.xlsx",
|
130 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
131 |
+
)
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
main()
|
dockerfile
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Start with a builder image
|
2 |
+
FROM python:3.9.13-slim as builder
|
3 |
+
|
4 |
+
# Copy only requirements.txt initially to leverage Docker cache
|
5 |
+
COPY requirements.txt .
|
6 |
+
RUN python3 -m pip install --upgrade pip
|
7 |
+
RUN python3 -m pip install --no-cache-dir -r requirements.txt
|
8 |
+
|
9 |
+
|
10 |
+
# sentence transformers deps
|
11 |
+
# ----------------------
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
# Set working directory
|
16 |
+
WORKDIR /app
|
17 |
+
# Copy the rest of the application from the current directory to /app inside the container
|
18 |
+
COPY . .
|
19 |
+
|
20 |
+
RUN sudo apt-get install -y glpk-utils
|
21 |
+
# Expose port 80 to the outside world
|
22 |
+
EXPOSE 8501
|
23 |
+
# Command to run the Uvicorn server
|
24 |
+
CMD ["streamlit", "run", "app.py"]
|
requirments.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
openpyxl
|
3 |
+
pyomo
|