Spaces:
Sleeping
Sleeping
add app
Browse files- app.py +134 -0
- dockerfile +24 -0
- requirments.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import io
|
| 4 |
+
from pyomo.environ import ConcreteModel, Var, Objective, Constraint, SolverFactory, NonNegativeReals, RangeSet, Param, minimize, value, Reals,Set
|
| 5 |
+
|
| 6 |
+
def get_output(df,df1,df2):
|
| 7 |
+
n = df['ID projet'].nunique()
|
| 8 |
+
task = df.groupby('ID projet').count()['Nom projet']
|
| 9 |
+
project =df.groupby('ID projet').count().index
|
| 10 |
+
|
| 11 |
+
J_sizes = {i:task[i-1] for i in range(1,n+1)}
|
| 12 |
+
|
| 13 |
+
Months = ['Janvier', 'F茅vrier', 'Mars', 'Avril', 'Mai', 'Juin', 'Juillet', 'Ao没t', 'Septembre', 'Octobre', 'Novembre', 'D茅cembre']
|
| 14 |
+
months = 12 # Number of months in set M
|
| 15 |
+
H_data = {(i, j, month): df.loc[df['ID projet']==project[i-1]].loc[df.loc[df['ID projet']==project[i-1]].index[j-1],Months[month-1]] for i in range(1, n + 1) for j in range(1, J_sizes[i] + 1) for month in range(1, months + 1)}
|
| 16 |
+
|
| 17 |
+
df1.fillna(0, inplace=True)
|
| 18 |
+
|
| 19 |
+
h = df1['Ressource'].nunique()
|
| 20 |
+
A_data = {(i, j, k): int(df.loc[df['ID projet']==project[i-1]].loc[df.loc[df['ID projet']==project[i-1]].index[j-1], 'Equipe'] == df1.loc[df1.index[k-1],'Equipe']) for i in range(1, n + 1) for j in range(1, J_sizes[i] + 1) for k in range(1, h + 1)}
|
| 21 |
+
per= [0.08,0.08,0.09,0.09,0.08,0.09,0.07,0.07,0.09,0.09,0.09,0.08]
|
| 22 |
+
C_data = {(k, month): df1.loc[df1.index[k-1],'Capacit茅']*per[month-1] for k in range(1, h + 1) for month in range(1, months + 1)}
|
| 23 |
+
|
| 24 |
+
p_data = {i:df2.loc[df2.index[i-1],'Pond'] for i in range(1, n + 1)}
|
| 25 |
+
|
| 26 |
+
# Define model
|
| 27 |
+
model = ConcreteModel()
|
| 28 |
+
|
| 29 |
+
# Sets
|
| 30 |
+
model.I = RangeSet(1, n)
|
| 31 |
+
model.M = RangeSet(1, months)
|
| 32 |
+
model.K = RangeSet(1, h)
|
| 33 |
+
model.J = Set(model.I, initialize=lambda model, i: RangeSet(1, J_sizes[i]))
|
| 34 |
+
|
| 35 |
+
# Flatten J for use in parameter definition
|
| 36 |
+
flat_J = [(i, j) for i in model.I for j in model.J[i]]
|
| 37 |
+
flat_J_pairs = [(i, j, l) for i in model.I for j in model.J[i] for l in model.J[i] if j != l]
|
| 38 |
+
|
| 39 |
+
# Parameters
|
| 40 |
+
model.H = Param(flat_J, model.M, initialize=H_data)
|
| 41 |
+
model.A = Param(flat_J, model.K, initialize=A_data)
|
| 42 |
+
model.C = Param(model.K, model.M, initialize=C_data)
|
| 43 |
+
model.p = Param(model.I, initialize=p_data)
|
| 44 |
+
|
| 45 |
+
# Variables
|
| 46 |
+
model.x = Var(flat_J, model.K, model.M, domain=NonNegativeReals)
|
| 47 |
+
|
| 48 |
+
# Auxiliary variables for max(0, ...)
|
| 49 |
+
model.max_0_terms = Var(flat_J, model.M, domain=NonNegativeReals)
|
| 50 |
+
model.max_0_terms_2 = Var(flat_J_pairs, model.M, domain=NonNegativeReals)
|
| 51 |
+
|
| 52 |
+
# Objective function
|
| 53 |
+
def objective_rule(model):
|
| 54 |
+
return sum(model.p[i] * (
|
| 55 |
+
sum(model.max_0_terms[i, j, month] for j in model.J[i]) +
|
| 56 |
+
sum(model.max_0_terms_2[i, j, l, month] for j in model.J[i] for l in model.J[i] if l != j)
|
| 57 |
+
) for i in model.I for month in model.M)
|
| 58 |
+
model.objective = Objective(rule=objective_rule, sense=minimize)
|
| 59 |
+
|
| 60 |
+
# Constraints to handle max(0, ...)
|
| 61 |
+
def max_0_term_constraint_1(model, i, j, month):
|
| 62 |
+
return model.max_0_terms[i, j, month] >= model.H[i, j, month] - sum(model.A[i, j, k] * model.x[i, j, k, month] for k in model.K)
|
| 63 |
+
model.max_0_term_constraint_1 = Constraint(flat_J, model.M, rule=max_0_term_constraint_1)
|
| 64 |
+
|
| 65 |
+
def max_0_term_constraint_2(model, i, j, month):
|
| 66 |
+
return model.max_0_terms[i, j, month] >= 0
|
| 67 |
+
model.max_0_term_constraint_2 = Constraint(flat_J, model.M, rule=max_0_term_constraint_2)
|
| 68 |
+
|
| 69 |
+
def max_0_term_2_constraint_1(model, i, j, l, month):
|
| 70 |
+
return model.max_0_terms_2[i, j, l, month] >= model.H[i, l, month] - sum(model.A[i, l, k] * model.x[i, l, k, month] for k in model.K)
|
| 71 |
+
model.max_0_term_2_constraint_1 = Constraint(flat_J_pairs, model.M, rule=max_0_term_2_constraint_1)
|
| 72 |
+
|
| 73 |
+
def max_0_term_2_constraint_2(model, i, j, l, month):
|
| 74 |
+
return model.max_0_terms_2[i, j, l, month] >= 0
|
| 75 |
+
model.max_0_term_2_constraint_2 = Constraint(flat_J_pairs, model.M, rule=max_0_term_2_constraint_2)
|
| 76 |
+
|
| 77 |
+
# Capacity constraint
|
| 78 |
+
def capacity_constraint(model, k, month):
|
| 79 |
+
return sum(model.x[i, j, k, month] for (i, j) in flat_J) <= model.C[k, month]
|
| 80 |
+
model.capacity_constraint = Constraint(model.K, model.M, rule=capacity_constraint)
|
| 81 |
+
|
| 82 |
+
# Solver
|
| 83 |
+
solver = SolverFactory('glpk') # Example using GLPK
|
| 84 |
+
result = solver.solve(model, tee=True)
|
| 85 |
+
|
| 86 |
+
Months= ['Janvier', 'F茅vrier', 'Mars', 'Avril', 'Mai', 'Juin', 'Juillet', 'Ao没t', 'Septembre', 'Octobre', 'Novembre', 'D茅cembre']
|
| 87 |
+
results = []
|
| 88 |
+
for (i, j) in flat_J:
|
| 89 |
+
for k in model.K:
|
| 90 |
+
result = {}
|
| 91 |
+
result['i']=project[i-1]
|
| 92 |
+
result['j']= j
|
| 93 |
+
result['k']=df1.loc[df1.index[k-1],'Ressource']
|
| 94 |
+
for month in model.M:
|
| 95 |
+
|
| 96 |
+
result[Months[month-1]] = value(model.x[i, j, k, month])
|
| 97 |
+
results.append(result)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
output_df = pd.DataFrame(results)
|
| 101 |
+
return output_df
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def main():
|
| 106 |
+
st.title("XLSX Upload and Download")
|
| 107 |
+
|
| 108 |
+
# File upload section
|
| 109 |
+
uploaded_file = st.file_uploader("Choose an XLSX file to upload", type="xlsx")
|
| 110 |
+
|
| 111 |
+
if uploaded_file is not None:
|
| 112 |
+
# Load the uploaded file into a Pandas DataFrame
|
| 113 |
+
df = pd.read_excel(uploaded_file, sheet_name='PMC1')
|
| 114 |
+
df1 = pd.read_excel(uploaded_file, sheet_name ='Base de ressource1')
|
| 115 |
+
df2 = pd.read_excel(uploaded_file, sheet_name ='Priorisation')
|
| 116 |
+
|
| 117 |
+
df_out = get_output(df,df1,df2)
|
| 118 |
+
# Display the uploaded DataFrame
|
| 119 |
+
st.write("Estimation")
|
| 120 |
+
st.dataframe(df_out)
|
| 121 |
+
|
| 122 |
+
# Download section
|
| 123 |
+
excel_file = io.BytesIO()
|
| 124 |
+
df_out.to_excel(excel_file, index=False)
|
| 125 |
+
|
| 126 |
+
st.download_button(
|
| 127 |
+
label="Download XLSX",
|
| 128 |
+
data=excel_file.getvalue(),
|
| 129 |
+
file_name="downloaded_file.xlsx",
|
| 130 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
if __name__ == "__main__":
|
| 134 |
+
main()
|
dockerfile
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Start with a builder image
|
| 2 |
+
FROM python:3.9.13-slim as builder
|
| 3 |
+
|
| 4 |
+
# Copy only requirements.txt initially to leverage Docker cache
|
| 5 |
+
COPY requirements.txt .
|
| 6 |
+
RUN python3 -m pip install --upgrade pip
|
| 7 |
+
RUN python3 -m pip install --no-cache-dir -r requirements.txt
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# sentence transformers deps
|
| 11 |
+
# ----------------------
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# Set working directory
|
| 16 |
+
WORKDIR /app
|
| 17 |
+
# Copy the rest of the application from the current directory to /app inside the container
|
| 18 |
+
COPY . .
|
| 19 |
+
|
| 20 |
+
RUN sudo apt-get install -y glpk-utils
|
| 21 |
+
# Expose port 80 to the outside world
|
| 22 |
+
EXPOSE 8501
|
| 23 |
+
# Command to run the Uvicorn server
|
| 24 |
+
CMD ["streamlit", "run", "app.py"]
|
requirments.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
openpyxl
|
| 3 |
+
pyomo
|