Spaces:
Runtime error
Runtime error
| import os | |
| import pandas as pd | |
| from tqdm import tqdm | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.vectorstores import SupabaseVectorStore | |
| from langchain.schema.document import Document | |
| from supabase import create_client, Client | |
| # --- Load Environment Variables --- | |
| SUPABASE_URL = os.getenv("SUPABASE_URL") | |
| SUPABASE_KEY = os.getenv("SUPABASE_KEY") | |
| # --- Init Supabase & Embeddings --- | |
| supabase: Client = create_client(SUPABASE_URL, SUPABASE_KEY) | |
| embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # Or OpenAIEmbeddings if you use Groq | |
| # --- Read CSV File --- | |
| df = pd.read_csv("supabase_docs.csv") # Assuming columns: 'content', 'metadata' or just 'content' | |
| # --- Convert rows to LangChain Document objects --- | |
| documents = [] | |
| for _, row in tqdm(df.iterrows(), total=len(df)): | |
| content = str(row["content"]) | |
| metadata = row.drop("content").to_dict() if "content" in row else {} | |
| documents.append(Document(page_content=content, metadata=metadata)) | |
| # --- Create Supabase Vector Store and Upload --- | |
| vectorstore = SupabaseVectorStore.from_documents( | |
| documents=documents, | |
| embedding=embeddings, | |
| client=supabase, | |
| table_name="documents", | |
| query_name="match_documents_langchain" | |
| ) | |
| print("β Upload complete.") | |