Spaces:
Runtime error
Runtime error
import os | |
import subprocess | |
import importlib.util | |
import gradio as gr | |
import logging | |
from moviepy.editor import VideoFileClip | |
# Function to truncate video to 15 seconds | |
def truncate_video(video_file): | |
"""Truncates video to 15 seconds and saves it as a temporary file.""" | |
clip = VideoFileClip(video_file) | |
truncated_clip = clip.subclip(0, min(15, clip.duration)) | |
truncated_video_file = "temp_truncated_video.mp4" | |
truncated_clip.write_videofile(truncated_video_file, codec="libx264", audio_codec="aac") | |
return truncated_video_file | |
# Clone the GitHub repository containing the backend | |
def clone_repo(): | |
"""Clone the GitHub repository containing the backend.""" | |
repo_url = "https://github.com/NeeravSood/AllMark-MVP.git" # Update if necessary | |
repo_path = "./repository" | |
# Retrieve the GitHub Personal Access Token (GITHUB_PAT) from environment variables | |
github_pat = os.getenv("GITHUB_PAT") | |
if not github_pat: | |
raise RuntimeError("GitHub Personal Access Token (GITHUB_PAT) not found in environment variables.") | |
# Modify the repository URL to include the token for authentication | |
authenticated_repo_url = f"https://{github_pat}@github.com/NeeravSood/AllMark-MVP.git" | |
if os.path.exists(repo_path): | |
print("Repository already cloned.") | |
else: | |
try: | |
# Clone the repository using the authenticated URL | |
subprocess.run( | |
["git", "clone", authenticated_repo_url, repo_path], | |
check=True, | |
text=True, | |
capture_output=True | |
) | |
print("Repository cloned successfully.") | |
except subprocess.CalledProcessError as e: | |
print("Output:", e.stdout) | |
print("Error:", e.stderr) | |
raise RuntimeError(f"Failed to clone repository: {e.stderr}") | |
def import_backend_script(script_name): | |
"""Dynamically import the backend script.""" | |
try: | |
script_path = os.path.join("./repository", script_name) | |
if not os.path.exists(script_path): | |
raise FileNotFoundError(f"Script {script_name} not found in the repository.") | |
spec = importlib.util.spec_from_file_location("backend_module", script_path) | |
backend_module = importlib.util.module_from_spec(spec) | |
spec.loader.exec_module(backend_module) | |
return backend_module | |
except Exception as e: | |
logging.error(f"Error importing backend script: {str(e)}") | |
raise RuntimeError(f"Failed to import backend script: {str(e)}") | |
# Clone the repository and import the backend module | |
clone_repo() | |
backend = import_backend_script("app.py") # Import app.py from the cloned repository | |
# Initialize the analyzer instance from the imported module | |
analyzer = backend.DeepfakeAnalyzer() # Use the imported module's class or function | |
# Define the Gradio function to analyze the video | |
import json # Ensure imports include json for dictionary-to-JSON string handling | |
def analyze_video(video_file): | |
try: | |
# Truncate the video to 15 seconds | |
truncated_video = truncate_video(video_file) | |
# Pass the truncated video to the analyzer | |
results = analyzer.analyze_media(truncated_video) | |
# Get the combined probability and interpret the result | |
combined_probability = results.get('combined_assessment', 0) | |
analysis_result = "genuine/original" if combined_probability < 50 else "a deepfake" | |
# Prepare JSON output | |
output = { | |
"message": f"According to our analysis, the video you uploaded appears to be {analysis_result} " | |
f"with a {combined_probability:.2f}% probability. " | |
f"{len(results['video_analysis']['frame_results'])} frames were analyzed in total." | |
} | |
return output | |
except Exception as e: | |
# Log the error and return a JSON-compatible error message | |
logging.error(f"Error during analysis: {e}") | |
return {"error": "An error occurred during video analysis. Please check your input and try again."} | |
# Define the Gradio interface with json output to handle dictionaries | |
interface = gr.Interface( | |
fn=analyze_video, | |
inputs=gr.Video(label="Upload Video"), | |
outputs="json", | |
title="AllMark - Deepfake Analyzer", | |
description="Upload a video to analyze for deepfake content. N.B. - Only mp4 files supported for now. Analysis usually takes between 1 to 5 minutes." | |
) | |
# Launch Gradio app | |
if __name__ == "__main__": | |
interface.launch() | |