NeeravS commited on
Commit
589bf82
·
verified ·
1 Parent(s): dec81fe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -7
app.py CHANGED
@@ -3,6 +3,16 @@ import subprocess
3
  import importlib.util
4
  import gradio as gr
5
  import logging
 
 
 
 
 
 
 
 
 
 
6
 
7
  # Clone the GitHub repository containing the backend
8
  def clone_repo():
@@ -57,9 +67,14 @@ backend = import_backend_script("app.py") # Import app.py from the cloned repos
57
  # Initialize the analyzer instance from the imported module
58
  analyzer = backend.DeepfakeAnalyzer() # Use the imported module's class or function
59
 
 
60
  # Define the Gradio function to analyze the video
61
  def analyze_video(video_file):
62
- results = analyzer.analyze_media(video_file)
 
 
 
 
63
  combined_probability = results['combined_assessment']
64
  audio_analysis = results["audio_analysis"]
65
  video_probability = results['video_analysis']['probability']
@@ -74,11 +89,6 @@ def analyze_video(video_file):
74
  "Frames Analyzed": frame_count,
75
  "Frame Analysis Summary": [
76
  {
77
- "Frame Number": frame_result["frame_number"],
78
- "Noise Level": frame_result["noise"],
79
- "Edge Density": frame_result["edge_density"],
80
- "Color Consistency": frame_result["color_consistency"],
81
- "Temporal Difference": frame_result["temporal_difference"],
82
  "Probability": frame_result["probability"]
83
  }
84
  for frame_result in results['video_analysis']['frame_results']
@@ -87,12 +97,13 @@ def analyze_video(video_file):
87
  }
88
  return output
89
 
 
90
  # Define the Gradio interface
91
  interface = gr.Interface(
92
  fn=analyze_video,
93
  inputs=gr.Video(label="Upload Video"),
94
  outputs="json",
95
- title="Deepfake Analyzer",
96
  description="Upload a video to analyze for deepfake content."
97
  )
98
 
 
3
  import importlib.util
4
  import gradio as gr
5
  import logging
6
+ from moviepy.editor import VideoFileClip
7
+
8
+ # Function to truncate video to 15 seconds
9
+ def truncate_video(video_file):
10
+ """Truncates video to 15 seconds and saves it as a temporary file."""
11
+ clip = VideoFileClip(video_file)
12
+ truncated_clip = clip.subclip(0, min(15, clip.duration))
13
+ truncated_video_file = "temp_truncated_video.mp4"
14
+ truncated_clip.write_videofile(truncated_video_file, codec="libx264", audio_codec="aac")
15
+ return truncated_video_file
16
 
17
  # Clone the GitHub repository containing the backend
18
  def clone_repo():
 
67
  # Initialize the analyzer instance from the imported module
68
  analyzer = backend.DeepfakeAnalyzer() # Use the imported module's class or function
69
 
70
+ # Define the Gradio function to analyze the video
71
  # Define the Gradio function to analyze the video
72
  def analyze_video(video_file):
73
+ # Truncate the video to 15 seconds
74
+ truncated_video = truncate_video(video_file)
75
+
76
+ # Pass the truncated video to the analyzer
77
+ results = analyzer.analyze_media(truncated_video)
78
  combined_probability = results['combined_assessment']
79
  audio_analysis = results["audio_analysis"]
80
  video_probability = results['video_analysis']['probability']
 
89
  "Frames Analyzed": frame_count,
90
  "Frame Analysis Summary": [
91
  {
 
 
 
 
 
92
  "Probability": frame_result["probability"]
93
  }
94
  for frame_result in results['video_analysis']['frame_results']
 
97
  }
98
  return output
99
 
100
+
101
  # Define the Gradio interface
102
  interface = gr.Interface(
103
  fn=analyze_video,
104
  inputs=gr.Video(label="Upload Video"),
105
  outputs="json",
106
+ title="AllMark - Deepfake Analyzer",
107
  description="Upload a video to analyze for deepfake content."
108
  )
109