Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,16 @@ import subprocess
|
|
3 |
import importlib.util
|
4 |
import gradio as gr
|
5 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Clone the GitHub repository containing the backend
|
8 |
def clone_repo():
|
@@ -57,9 +67,14 @@ backend = import_backend_script("app.py") # Import app.py from the cloned repos
|
|
57 |
# Initialize the analyzer instance from the imported module
|
58 |
analyzer = backend.DeepfakeAnalyzer() # Use the imported module's class or function
|
59 |
|
|
|
60 |
# Define the Gradio function to analyze the video
|
61 |
def analyze_video(video_file):
|
62 |
-
|
|
|
|
|
|
|
|
|
63 |
combined_probability = results['combined_assessment']
|
64 |
audio_analysis = results["audio_analysis"]
|
65 |
video_probability = results['video_analysis']['probability']
|
@@ -74,11 +89,6 @@ def analyze_video(video_file):
|
|
74 |
"Frames Analyzed": frame_count,
|
75 |
"Frame Analysis Summary": [
|
76 |
{
|
77 |
-
"Frame Number": frame_result["frame_number"],
|
78 |
-
"Noise Level": frame_result["noise"],
|
79 |
-
"Edge Density": frame_result["edge_density"],
|
80 |
-
"Color Consistency": frame_result["color_consistency"],
|
81 |
-
"Temporal Difference": frame_result["temporal_difference"],
|
82 |
"Probability": frame_result["probability"]
|
83 |
}
|
84 |
for frame_result in results['video_analysis']['frame_results']
|
@@ -87,12 +97,13 @@ def analyze_video(video_file):
|
|
87 |
}
|
88 |
return output
|
89 |
|
|
|
90 |
# Define the Gradio interface
|
91 |
interface = gr.Interface(
|
92 |
fn=analyze_video,
|
93 |
inputs=gr.Video(label="Upload Video"),
|
94 |
outputs="json",
|
95 |
-
title="Deepfake Analyzer",
|
96 |
description="Upload a video to analyze for deepfake content."
|
97 |
)
|
98 |
|
|
|
3 |
import importlib.util
|
4 |
import gradio as gr
|
5 |
import logging
|
6 |
+
from moviepy.editor import VideoFileClip
|
7 |
+
|
8 |
+
# Function to truncate video to 15 seconds
|
9 |
+
def truncate_video(video_file):
|
10 |
+
"""Truncates video to 15 seconds and saves it as a temporary file."""
|
11 |
+
clip = VideoFileClip(video_file)
|
12 |
+
truncated_clip = clip.subclip(0, min(15, clip.duration))
|
13 |
+
truncated_video_file = "temp_truncated_video.mp4"
|
14 |
+
truncated_clip.write_videofile(truncated_video_file, codec="libx264", audio_codec="aac")
|
15 |
+
return truncated_video_file
|
16 |
|
17 |
# Clone the GitHub repository containing the backend
|
18 |
def clone_repo():
|
|
|
67 |
# Initialize the analyzer instance from the imported module
|
68 |
analyzer = backend.DeepfakeAnalyzer() # Use the imported module's class or function
|
69 |
|
70 |
+
# Define the Gradio function to analyze the video
|
71 |
# Define the Gradio function to analyze the video
|
72 |
def analyze_video(video_file):
|
73 |
+
# Truncate the video to 15 seconds
|
74 |
+
truncated_video = truncate_video(video_file)
|
75 |
+
|
76 |
+
# Pass the truncated video to the analyzer
|
77 |
+
results = analyzer.analyze_media(truncated_video)
|
78 |
combined_probability = results['combined_assessment']
|
79 |
audio_analysis = results["audio_analysis"]
|
80 |
video_probability = results['video_analysis']['probability']
|
|
|
89 |
"Frames Analyzed": frame_count,
|
90 |
"Frame Analysis Summary": [
|
91 |
{
|
|
|
|
|
|
|
|
|
|
|
92 |
"Probability": frame_result["probability"]
|
93 |
}
|
94 |
for frame_result in results['video_analysis']['frame_results']
|
|
|
97 |
}
|
98 |
return output
|
99 |
|
100 |
+
|
101 |
# Define the Gradio interface
|
102 |
interface = gr.Interface(
|
103 |
fn=analyze_video,
|
104 |
inputs=gr.Video(label="Upload Video"),
|
105 |
outputs="json",
|
106 |
+
title="AllMark - Deepfake Analyzer",
|
107 |
description="Upload a video to analyze for deepfake content."
|
108 |
)
|
109 |
|