Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,13 +6,15 @@ import torch
|
|
| 6 |
from torchvision import transforms
|
| 7 |
import os
|
| 8 |
import zipfile
|
|
|
|
|
|
|
| 9 |
|
| 10 |
torch.set_float32_matmul_precision(["high", "highest"][0])
|
| 11 |
|
| 12 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 13 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 14 |
)
|
| 15 |
-
birefnet.to("
|
| 16 |
transform_image = transforms.Compose(
|
| 17 |
[
|
| 18 |
transforms.Resize((1024, 1024)),
|
|
@@ -25,7 +27,7 @@ def fn(image):
|
|
| 25 |
im = load_img(image, output_type="pil")
|
| 26 |
im = im.convert("RGB")
|
| 27 |
image_size = im.size
|
| 28 |
-
input_images = transform_image(im).unsqueeze(0).to("
|
| 29 |
|
| 30 |
with torch.no_grad():
|
| 31 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
|
@@ -37,13 +39,16 @@ def fn(image):
|
|
| 37 |
output_file_path = os.path.join("output_images", "output_image_single.png")
|
| 38 |
im.save(output_file_path)
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
def fn_url(url):
|
| 43 |
im = load_img(url, output_type="pil")
|
| 44 |
im = im.convert("RGB")
|
| 45 |
image_size = im.size
|
| 46 |
-
input_images = transform_image(im).unsqueeze(0).to("
|
| 47 |
|
| 48 |
with torch.no_grad():
|
| 49 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
|
@@ -55,7 +60,10 @@ def fn_url(url):
|
|
| 55 |
output_file_path = os.path.join("output_images", "output_image_url.png")
|
| 56 |
im.save(output_file_path)
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
def batch_fn(images):
|
| 61 |
output_paths = []
|
|
@@ -63,7 +71,7 @@ def batch_fn(images):
|
|
| 63 |
im = load_img(image_path, output_type="pil")
|
| 64 |
im = im.convert("RGB")
|
| 65 |
image_size = im.size
|
| 66 |
-
input_images = transform_image(im).unsqueeze(0).to("
|
| 67 |
|
| 68 |
with torch.no_grad():
|
| 69 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
|
@@ -71,7 +79,7 @@ def batch_fn(images):
|
|
| 71 |
pred_pil = transforms.ToPILImage()(pred)
|
| 72 |
mask = pred_pil.resize(image_size)
|
| 73 |
|
| 74 |
-
im.putalpha(mask)
|
| 75 |
|
| 76 |
output_file_path = os.path.join("output_images", f"output_image_batch_{idx + 1}.png")
|
| 77 |
im.save(output_file_path)
|
|
@@ -95,10 +103,10 @@ chameleon = load_img("chameleon.jpg", output_type="pil")
|
|
| 95 |
url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
|
| 96 |
|
| 97 |
tab1 = gr.Interface(
|
| 98 |
-
fn, inputs=image, outputs=slider1, examples=[chameleon], api_name="image"
|
| 99 |
)
|
| 100 |
|
| 101 |
-
tab2 = gr.Interface(fn_url, inputs=text, outputs=slider2, examples=[url], api_name="text")
|
| 102 |
|
| 103 |
tab3 = gr.Interface(
|
| 104 |
batch_fn,
|
|
|
|
| 6 |
from torchvision import transforms
|
| 7 |
import os
|
| 8 |
import zipfile
|
| 9 |
+
import numpy as np
|
| 10 |
+
from PIL import Image
|
| 11 |
|
| 12 |
torch.set_float32_matmul_precision(["high", "highest"][0])
|
| 13 |
|
| 14 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 15 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 16 |
)
|
| 17 |
+
birefnet.to("cuda")
|
| 18 |
transform_image = transforms.Compose(
|
| 19 |
[
|
| 20 |
transforms.Resize((1024, 1024)),
|
|
|
|
| 27 |
im = load_img(image, output_type="pil")
|
| 28 |
im = im.convert("RGB")
|
| 29 |
image_size = im.size
|
| 30 |
+
input_images = transform_image(im).unsqueeze(0).to("cuda")
|
| 31 |
|
| 32 |
with torch.no_grad():
|
| 33 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
|
|
|
| 39 |
output_file_path = os.path.join("output_images", "output_image_single.png")
|
| 40 |
im.save(output_file_path)
|
| 41 |
|
| 42 |
+
output_path = os.path.join("output_images", "output_image_processed.png")
|
| 43 |
+
im.save(output_path, "PNG")
|
| 44 |
+
|
| 45 |
+
return [im, mask], output_path
|
| 46 |
|
| 47 |
def fn_url(url):
|
| 48 |
im = load_img(url, output_type="pil")
|
| 49 |
im = im.convert("RGB")
|
| 50 |
image_size = im.size
|
| 51 |
+
input_images = transform_image(im).unsqueeze(0).to("cuda")
|
| 52 |
|
| 53 |
with torch.no_grad():
|
| 54 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
|
|
|
| 60 |
output_file_path = os.path.join("output_images", "output_image_url.png")
|
| 61 |
im.save(output_file_path)
|
| 62 |
|
| 63 |
+
output_path = os.path.join("output_images", "output_image_url_processed.png")
|
| 64 |
+
im.save(output_path, "PNG")
|
| 65 |
+
|
| 66 |
+
return [im, mask], output_path
|
| 67 |
|
| 68 |
def batch_fn(images):
|
| 69 |
output_paths = []
|
|
|
|
| 71 |
im = load_img(image_path, output_type="pil")
|
| 72 |
im = im.convert("RGB")
|
| 73 |
image_size = im.size
|
| 74 |
+
input_images = transform_image(im).unsqueeze(0).to("cuda")
|
| 75 |
|
| 76 |
with torch.no_grad():
|
| 77 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
|
|
|
| 79 |
pred_pil = transforms.ToPILImage()(pred)
|
| 80 |
mask = pred_pil.resize(image_size)
|
| 81 |
|
| 82 |
+
im.putalpha(mask)
|
| 83 |
|
| 84 |
output_file_path = os.path.join("output_images", f"output_image_batch_{idx + 1}.png")
|
| 85 |
im.save(output_file_path)
|
|
|
|
| 103 |
url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
|
| 104 |
|
| 105 |
tab1 = gr.Interface(
|
| 106 |
+
fn, inputs=image, outputs=[slider1, gr.File(label="PNG Output")], examples=[chameleon], api_name="image"
|
| 107 |
)
|
| 108 |
|
| 109 |
+
tab2 = gr.Interface(fn_url, inputs=text, outputs=[slider2, gr.File(label="PNG Output")], examples=[url], api_name="text")
|
| 110 |
|
| 111 |
tab3 = gr.Interface(
|
| 112 |
batch_fn,
|