Spaces:
Sleeping
Sleeping
File size: 1,172 Bytes
e93a9b7 c211d7c e93a9b7 c211d7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import streamlit as st
from fastai.vision.widgets import *
from fastai.vision.all import *
from pathlib import Path
import streamlit as st
def is_cat(x): return x[0].isupper()
class Predict:
def __init__(self, filename):
self.learn_inference = load_learner(Path()/filename)
self.img = self.get_image_from_upload()
if self.img is not None:
self.display_output()
self.get_prediction()
@staticmethod
def get_image_from_upload():
uploaded_file = st.file_uploader("Upload Files",type=['png','jpeg', 'jpg'])
if uploaded_file is not None:
return PILImage.create((uploaded_file))
return None
def display_output(self):
st.image(self.img.to_thumb(500,500), caption='Uploaded Image')
def get_prediction(self):
if st.button('Classify'):
pred, pred_idx, probs = self.learn_inference.predict(self.img)
st.write(f'Prediction: {pred}; Probability: {probs[pred_idx]:.04f}')
else:
st.write(f'Click the button to classify')
if __name__=='__main__':
file_name='model.pkl'
predictor = Predict(file_name) |