NeoPy commited on
Commit
e851f76
·
verified ·
1 Parent(s): 469bf83

Update main/app/app.py

Browse files
Files changed (1) hide show
  1. main/app/app.py +211 -211
main/app/app.py CHANGED
@@ -830,6 +830,217 @@ with gr.Blocks(title=" Ultimate RVC Maker ⚡", theme=theme) as app:
830
  api_name="upload_pretrain_d"
831
  )
832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
833
  with gr.TabItem(translations["audio_editing"], visible=configs.get("audioldm2", True)):
834
  gr.Markdown(translations["audio_editing_info"])
835
  with gr.Row():
@@ -1151,217 +1362,6 @@ with gr.Blocks(title=" Ultimate RVC Maker ⚡", theme=theme) as app:
1151
  api_name="create_dataset"
1152
  )
1153
 
1154
- with gr.TabItem(translations["training_model"], visible=configs.get("training_tab", True)):
1155
- gr.Markdown(f"## {translations['training_model']}")
1156
- with gr.Row():
1157
- gr.Markdown(translations["training_markdown"])
1158
- with gr.Row():
1159
- with gr.Column():
1160
- with gr.Row():
1161
- with gr.Column():
1162
- training_name = gr.Textbox(label=translations["modelname"], info=translations["training_model_name"], value="", placeholder=translations["modelname"], interactive=True)
1163
- training_sr = gr.Radio(label=translations["sample_rate"], info=translations["sample_rate_info"], choices=["32k", "40k", "48k"], value="48k", interactive=True)
1164
- training_ver = gr.Radio(label=translations["training_version"], info=translations["training_version_info"], choices=["v1", "v2"], value="v2", interactive=True)
1165
- with gr.Row():
1166
- clean_dataset = gr.Checkbox(label=translations["clear_dataset"], value=False, interactive=True)
1167
- preprocess_cut = gr.Checkbox(label=translations["split_audio"], value=True, interactive=True)
1168
- process_effects = gr.Checkbox(label=translations["preprocess_effect"], value=False, interactive=True)
1169
- checkpointing1 = gr.Checkbox(label=translations["memory_efficient_training"], value=False, interactive=True)
1170
- training_f0 = gr.Checkbox(label=translations["training_pitch"], value=True, interactive=True)
1171
- upload = gr.Checkbox(label=translations["upload_dataset"], value=False, interactive=True)
1172
- with gr.Row():
1173
- clean_dataset_strength = gr.Slider(label=translations["clean_strength"], info=translations["clean_strength_info"], minimum=0, maximum=1, value=0.7, step=0.1, interactive=True, visible=clean_dataset.value)
1174
- with gr.Column():
1175
- preprocess_button = gr.Button(translations["preprocess_button"], scale=2)
1176
- upload_dataset = gr.Files(label=translations["drop_audio"], file_types=[".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3"], visible=upload.value)
1177
- preprocess_info = gr.Textbox(label=translations["preprocess_info"], value="", interactive=False)
1178
- with gr.Column():
1179
- with gr.Row():
1180
- with gr.Column():
1181
- with gr.Accordion(label=translations["f0_method"], open=False):
1182
- with gr.Group():
1183
- with gr.Row():
1184
- onnx_f0_mode2 = gr.Checkbox(label=translations["f0_onnx_mode"], info=translations["f0_onnx_mode_info"], value=False, interactive=True)
1185
- unlock_full_method4 = gr.Checkbox(label=translations["f0_unlock"], info=translations["f0_unlock_info"], value=False, interactive=True)
1186
- extract_method = gr.Radio(label=translations["f0_method"], info=translations["f0_method_info"], choices=method_f0, value="rmvpe", interactive=True)
1187
- extract_hop_length = gr.Slider(label="Hop length", info=translations["hop_length_info"], minimum=1, maximum=512, value=128, step=1, interactive=True, visible=False)
1188
- with gr.Accordion(label=translations["hubert_model"], open=False):
1189
- with gr.Group():
1190
- embed_mode2 = gr.Radio(label=translations["embed_mode"], info=translations["embed_mode_info"], value="fairseq", choices=embedders_mode, interactive=True, visible=True)
1191
- extract_embedders = gr.Radio(label=translations["hubert_model"], info=translations["hubert_info"], choices=embedders_model, value="hubert_base", interactive=True)
1192
- with gr.Row():
1193
- extract_embedders_custom = gr.Textbox(label=translations["modelname"], info=translations["modelname_info"], value="", placeholder="hubert_base", interactive=True, visible=extract_embedders.value == "custom")
1194
- with gr.Column():
1195
- extract_button = gr.Button(translations["extract_button"], scale=2)
1196
- extract_info = gr.Textbox(label=translations["extract_info"], value="", interactive=False)
1197
- with gr.Column():
1198
- with gr.Row():
1199
- with gr.Column():
1200
- total_epochs = gr.Slider(label=translations["total_epoch"], info=translations["total_epoch_info"], minimum=1, maximum=10000, value=300, step=1, interactive=True)
1201
- save_epochs = gr.Slider(label=translations["save_epoch"], info=translations["save_epoch_info"], minimum=1, maximum=10000, value=50, step=1, interactive=True)
1202
- with gr.Column():
1203
- with gr.Row():
1204
- index_button = gr.Button(f"3. {translations['create_index']}", variant="primary", scale=2)
1205
- training_button = gr.Button(f"4. {translations['training_model']}", variant="primary", scale=2)
1206
- with gr.Row():
1207
- with gr.Accordion(label=translations["setting"], open=False):
1208
- with gr.Row():
1209
- index_algorithm = gr.Radio(label=translations["index_algorithm"], info=translations["index_algorithm_info"], choices=["Auto", "Faiss", "KMeans"], value="Auto", interactive=True)
1210
- with gr.Row():
1211
- custom_dataset = gr.Checkbox(label=translations["custom_dataset"], info=translations["custom_dataset_info"], value=False, interactive=True)
1212
- overtraining_detector = gr.Checkbox(label=translations["overtraining_detector"], info=translations["overtraining_detector_info"], value=False, interactive=True)
1213
- clean_up = gr.Checkbox(label=translations["cleanup_training"], info=translations["cleanup_training_info"], value=False, interactive=True)
1214
- cache_in_gpu = gr.Checkbox(label=translations["cache_in_gpu"], info=translations["cache_in_gpu_info"], value=False, interactive=True)
1215
- with gr.Column():
1216
- dataset_path = gr.Textbox(label=translations["dataset_folder"], value="dataset", interactive=True, visible=custom_dataset.value)
1217
- with gr.Column():
1218
- threshold = gr.Slider(minimum=1, maximum=100, value=50, step=1, label=translations["threshold"], interactive=True, visible=overtraining_detector.value)
1219
- with gr.Accordion(translations["setting_cpu_gpu"], open=False):
1220
- with gr.Column():
1221
- gpu_number = gr.Textbox(label=translations["gpu_number"], value=str("-".join(map(str, range(torch.cuda.device_count()))) if torch.cuda.is_available() else "-"), info=translations["gpu_number_info"], interactive=True)
1222
- gpu_info = gr.Textbox(label=translations["gpu_info"], value=get_gpu_info(), info=translations["gpu_info_2"], interactive=False)
1223
- cpu_core = gr.Slider(label=translations["cpu_core"], info=translations["cpu_core_info"], minimum=0, maximum=cpu_count(), value=cpu_count(), step=1, interactive=True)
1224
- train_batch_size = gr.Slider(label=translations["batch_size"], info=translations["batch_size_info"], minimum=1, maximum=64, value=8, step=1, interactive=True)
1225
- with gr.Row():
1226
- save_only_latest = gr.Checkbox(label=translations["save_only_latest"], info=translations["save_only_latest_info"], value=True, interactive=True)
1227
- save_every_weights = gr.Checkbox(label=translations["save_every_weights"], info=translations["save_every_weights_info"], value=True, interactive=True)
1228
- not_use_pretrain = gr.Checkbox(label=translations["not_use_pretrain_2"], info=translations["not_use_pretrain_info"], value=False, interactive=True)
1229
- custom_pretrain = gr.Checkbox(label=translations["custom_pretrain"], info=translations["custom_pretrain_info"], value=False, interactive=True)
1230
- with gr.Row():
1231
- vocoders = gr.Radio(label=translations["vocoder"], info=translations["vocoder_info"], choices=["Default", "MRF-HiFi-GAN", "RefineGAN"], value="Default", interactive=True)
1232
- with gr.Row():
1233
- deterministic = gr.Checkbox(label=translations["deterministic"], info=translations["deterministic_info"], value=False, interactive=True)
1234
- benchmark = gr.Checkbox(label=translations["benchmark"], info=translations["benchmark_info"], value=False, interactive=True)
1235
- with gr.Row():
1236
- model_author = gr.Textbox(label=translations["training_author"], info=translations["training_author_info"], value="", placeholder=translations["training_author"], interactive=True)
1237
- with gr.Row():
1238
- with gr.Column():
1239
- with gr.Accordion(translations["custom_pretrain_info"], open=False, visible=custom_pretrain.value and not not_use_pretrain.value) as pretrain_setting:
1240
- pretrained_D = gr.Dropdown(label=translations["pretrain_file"].format(dg="D"), choices=pretrainedD, value=pretrainedD[0] if len(pretrainedD) > 0 else '', interactive=True, allow_custom_value=True)
1241
- pretrained_G = gr.Dropdown(label=translations["pretrain_file"].format(dg="G"), choices=pretrainedG, value=pretrainedG[0] if len(pretrainedG) > 0 else '', interactive=True, allow_custom_value=True)
1242
- refesh_pretrain = gr.Button(translations["refesh"], scale=2)
1243
- with gr.Row():
1244
- training_info = gr.Textbox(label=translations["train_info"], value="", interactive=False)
1245
- with gr.Row():
1246
- with gr.Column():
1247
- with gr.Accordion(translations["export_model"], open=False):
1248
- with gr.Row():
1249
- model_file= gr.Dropdown(label=translations["model_name"], choices=model_name, value=model_name[0] if len(model_name) >= 1 else "", interactive=True, allow_custom_value=True)
1250
- index_file = gr.Dropdown(label=translations["index_path"], choices=index_path, value=index_path[0] if len(index_path) >= 1 else "", interactive=True, allow_custom_value=True)
1251
- with gr.Row():
1252
- refesh_file = gr.Button(f"1. {translations['refesh']}", scale=2)
1253
- zip_model = gr.Button(translations["zip_model"], variant="primary", scale=2)
1254
- with gr.Row():
1255
- zip_output = gr.File(label=translations["output_zip"], file_types=[".zip"], interactive=False, visible=False)
1256
- with gr.Row():
1257
- vocoders.change(fn=pitch_guidance_lock, inputs=[vocoders], outputs=[training_f0])
1258
- training_f0.change(fn=vocoders_lock, inputs=[training_f0, vocoders], outputs=[vocoders])
1259
- unlock_full_method4.change(fn=unlock_f0, inputs=[unlock_full_method4], outputs=[extract_method])
1260
- with gr.Row():
1261
- refesh_file.click(fn=change_models_choices, inputs=[], outputs=[model_file, index_file])
1262
- zip_model.click(fn=zip_file, inputs=[training_name, model_file, index_file], outputs=[zip_output])
1263
- dataset_path.change(fn=lambda folder: os.makedirs(folder, exist_ok=True), inputs=[dataset_path], outputs=[])
1264
- with gr.Row():
1265
- upload.change(fn=visible, inputs=[upload], outputs=[upload_dataset])
1266
- overtraining_detector.change(fn=visible, inputs=[overtraining_detector], outputs=[threshold])
1267
- clean_dataset.change(fn=visible, inputs=[clean_dataset], outputs=[clean_dataset_strength])
1268
- with gr.Row():
1269
- custom_dataset.change(fn=lambda custom_dataset: [visible(custom_dataset), "dataset"],inputs=[custom_dataset], outputs=[dataset_path, dataset_path])
1270
- training_ver.change(fn=unlock_vocoder, inputs=[training_ver, vocoders], outputs=[vocoders])
1271
- vocoders.change(fn=unlock_ver, inputs=[training_ver, vocoders], outputs=[training_ver])
1272
- upload_dataset.upload(
1273
- fn=lambda files, folder: [shutil.move(f.name, os.path.join(folder, os.path.split(f.name)[1])) for f in files] if folder != "" else gr_warning(translations["dataset_folder1"]),
1274
- inputs=[upload_dataset, dataset_path],
1275
- outputs=[],
1276
- api_name="upload_dataset"
1277
- )
1278
- with gr.Row():
1279
- not_use_pretrain.change(fn=lambda a, b: visible(a and not b), inputs=[custom_pretrain, not_use_pretrain], outputs=[pretrain_setting])
1280
- custom_pretrain.change(fn=lambda a, b: visible(a and not b), inputs=[custom_pretrain, not_use_pretrain], outputs=[pretrain_setting])
1281
- refesh_pretrain.click(fn=change_pretrained_choices, inputs=[], outputs=[pretrained_D, pretrained_G])
1282
- with gr.Row():
1283
- preprocess_button.click(
1284
- fn=preprocess,
1285
- inputs=[
1286
- training_name,
1287
- training_sr,
1288
- cpu_core,
1289
- preprocess_cut,
1290
- process_effects,
1291
- dataset_path,
1292
- clean_dataset,
1293
- clean_dataset_strength
1294
- ],
1295
- outputs=[preprocess_info],
1296
- api_name="preprocess"
1297
- )
1298
- with gr.Row():
1299
- embed_mode2.change(fn=visible_embedders, inputs=[embed_mode2], outputs=[extract_embedders])
1300
- extract_method.change(fn=hoplength_show, inputs=[extract_method], outputs=[extract_hop_length])
1301
- extract_embedders.change(fn=lambda extract_embedders: visible(extract_embedders == "custom"), inputs=[extract_embedders], outputs=[extract_embedders_custom])
1302
- with gr.Row():
1303
- extract_button.click(
1304
- fn=extract,
1305
- inputs=[
1306
- training_name,
1307
- training_ver,
1308
- extract_method,
1309
- training_f0,
1310
- extract_hop_length,
1311
- cpu_core,
1312
- gpu_number,
1313
- training_sr,
1314
- extract_embedders,
1315
- extract_embedders_custom,
1316
- onnx_f0_mode2,
1317
- embed_mode2
1318
- ],
1319
- outputs=[extract_info],
1320
- api_name="extract"
1321
- )
1322
- with gr.Row():
1323
- index_button.click(
1324
- fn=create_index,
1325
- inputs=[
1326
- training_name,
1327
- training_ver,
1328
- index_algorithm
1329
- ],
1330
- outputs=[training_info],
1331
- api_name="create_index"
1332
- )
1333
- with gr.Row():
1334
- training_button.click(
1335
- fn=training,
1336
- inputs=[
1337
- training_name,
1338
- training_ver,
1339
- save_epochs,
1340
- save_only_latest,
1341
- save_every_weights,
1342
- total_epochs,
1343
- training_sr,
1344
- train_batch_size,
1345
- gpu_number,
1346
- training_f0,
1347
- not_use_pretrain,
1348
- custom_pretrain,
1349
- pretrained_G,
1350
- pretrained_D,
1351
- overtraining_detector,
1352
- threshold,
1353
- clean_up,
1354
- cache_in_gpu,
1355
- model_author,
1356
- vocoders,
1357
- checkpointing1,
1358
- deterministic,
1359
- benchmark
1360
- ],
1361
- outputs=[training_info],
1362
- api_name="training_model"
1363
- )
1364
-
1365
  with gr.TabItem(translations["fushion"], visible=configs.get("fushion_tab", True)):
1366
  gr.Markdown(translations["fushion_markdown"])
1367
  with gr.Row():
 
830
  api_name="upload_pretrain_d"
831
  )
832
 
833
+ with gr.TabItem(translations["training_model"], visible=configs.get("training_tab", True)):
834
+ gr.Markdown(f"## {translations['training_model']}")
835
+ with gr.Row():
836
+ gr.Markdown(translations["training_markdown"])
837
+ with gr.Row():
838
+ with gr.Column():
839
+ with gr.Row():
840
+ with gr.Column():
841
+ training_name = gr.Textbox(label=translations["modelname"], info=translations["training_model_name"], value="", placeholder=translations["modelname"], interactive=True)
842
+ training_sr = gr.Radio(label=translations["sample_rate"], info=translations["sample_rate_info"], choices=["32k", "40k", "48k"], value="48k", interactive=True)
843
+ training_ver = gr.Radio(label=translations["training_version"], info=translations["training_version_info"], choices=["v1", "v2"], value="v2", interactive=True)
844
+ with gr.Row():
845
+ clean_dataset = gr.Checkbox(label=translations["clear_dataset"], value=False, interactive=True)
846
+ preprocess_cut = gr.Checkbox(label=translations["split_audio"], value=True, interactive=True)
847
+ process_effects = gr.Checkbox(label=translations["preprocess_effect"], value=False, interactive=True)
848
+ checkpointing1 = gr.Checkbox(label=translations["memory_efficient_training"], value=False, interactive=True)
849
+ training_f0 = gr.Checkbox(label=translations["training_pitch"], value=True, interactive=True)
850
+ upload = gr.Checkbox(label=translations["upload_dataset"], value=False, interactive=True)
851
+ with gr.Row():
852
+ clean_dataset_strength = gr.Slider(label=translations["clean_strength"], info=translations["clean_strength_info"], minimum=0, maximum=1, value=0.7, step=0.1, interactive=True, visible=clean_dataset.value)
853
+ with gr.Column():
854
+ preprocess_button = gr.Button(translations["preprocess_button"], scale=2)
855
+ upload_dataset = gr.Files(label=translations["drop_audio"], file_types=[".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3"], visible=upload.value)
856
+ preprocess_info = gr.Textbox(label=translations["preprocess_info"], value="", interactive=False)
857
+ with gr.Column():
858
+ with gr.Row():
859
+ with gr.Column():
860
+ with gr.Accordion(label=translations["f0_method"], open=False):
861
+ with gr.Group():
862
+ with gr.Row():
863
+ onnx_f0_mode2 = gr.Checkbox(label=translations["f0_onnx_mode"], info=translations["f0_onnx_mode_info"], value=False, interactive=True)
864
+ unlock_full_method4 = gr.Checkbox(label=translations["f0_unlock"], info=translations["f0_unlock_info"], value=False, interactive=True)
865
+ extract_method = gr.Radio(label=translations["f0_method"], info=translations["f0_method_info"], choices=method_f0, value="rmvpe", interactive=True)
866
+ extract_hop_length = gr.Slider(label="Hop length", info=translations["hop_length_info"], minimum=1, maximum=512, value=128, step=1, interactive=True, visible=False)
867
+ with gr.Accordion(label=translations["hubert_model"], open=False):
868
+ with gr.Group():
869
+ embed_mode2 = gr.Radio(label=translations["embed_mode"], info=translations["embed_mode_info"], value="fairseq", choices=embedders_mode, interactive=True, visible=True)
870
+ extract_embedders = gr.Radio(label=translations["hubert_model"], info=translations["hubert_info"], choices=embedders_model, value="hubert_base", interactive=True)
871
+ with gr.Row():
872
+ extract_embedders_custom = gr.Textbox(label=translations["modelname"], info=translations["modelname_info"], value="", placeholder="hubert_base", interactive=True, visible=extract_embedders.value == "custom")
873
+ with gr.Column():
874
+ extract_button = gr.Button(translations["extract_button"], scale=2)
875
+ extract_info = gr.Textbox(label=translations["extract_info"], value="", interactive=False)
876
+ with gr.Column():
877
+ with gr.Row():
878
+ with gr.Column():
879
+ total_epochs = gr.Slider(label=translations["total_epoch"], info=translations["total_epoch_info"], minimum=1, maximum=10000, value=300, step=1, interactive=True)
880
+ save_epochs = gr.Slider(label=translations["save_epoch"], info=translations["save_epoch_info"], minimum=1, maximum=10000, value=50, step=1, interactive=True)
881
+ with gr.Column():
882
+ with gr.Row():
883
+ index_button = gr.Button(f"3. {translations['create_index']}", variant="primary", scale=2)
884
+ training_button = gr.Button(f"4. {translations['training_model']}", variant="primary", scale=2)
885
+ with gr.Row():
886
+ with gr.Accordion(label=translations["setting"], open=False):
887
+ with gr.Row():
888
+ index_algorithm = gr.Radio(label=translations["index_algorithm"], info=translations["index_algorithm_info"], choices=["Auto", "Faiss", "KMeans"], value="Auto", interactive=True)
889
+ with gr.Row():
890
+ custom_dataset = gr.Checkbox(label=translations["custom_dataset"], info=translations["custom_dataset_info"], value=False, interactive=True)
891
+ overtraining_detector = gr.Checkbox(label=translations["overtraining_detector"], info=translations["overtraining_detector_info"], value=False, interactive=True)
892
+ clean_up = gr.Checkbox(label=translations["cleanup_training"], info=translations["cleanup_training_info"], value=False, interactive=True)
893
+ cache_in_gpu = gr.Checkbox(label=translations["cache_in_gpu"], info=translations["cache_in_gpu_info"], value=False, interactive=True)
894
+ with gr.Column():
895
+ dataset_path = gr.Textbox(label=translations["dataset_folder"], value="dataset", interactive=True, visible=custom_dataset.value)
896
+ with gr.Column():
897
+ threshold = gr.Slider(minimum=1, maximum=100, value=50, step=1, label=translations["threshold"], interactive=True, visible=overtraining_detector.value)
898
+ with gr.Accordion(translations["setting_cpu_gpu"], open=False):
899
+ with gr.Column():
900
+ gpu_number = gr.Textbox(label=translations["gpu_number"], value=str("-".join(map(str, range(torch.cuda.device_count()))) if torch.cuda.is_available() else "-"), info=translations["gpu_number_info"], interactive=True)
901
+ gpu_info = gr.Textbox(label=translations["gpu_info"], value=get_gpu_info(), info=translations["gpu_info_2"], interactive=False)
902
+ cpu_core = gr.Slider(label=translations["cpu_core"], info=translations["cpu_core_info"], minimum=0, maximum=cpu_count(), value=cpu_count(), step=1, interactive=True)
903
+ train_batch_size = gr.Slider(label=translations["batch_size"], info=translations["batch_size_info"], minimum=1, maximum=64, value=8, step=1, interactive=True)
904
+ with gr.Row():
905
+ save_only_latest = gr.Checkbox(label=translations["save_only_latest"], info=translations["save_only_latest_info"], value=True, interactive=True)
906
+ save_every_weights = gr.Checkbox(label=translations["save_every_weights"], info=translations["save_every_weights_info"], value=True, interactive=True)
907
+ not_use_pretrain = gr.Checkbox(label=translations["not_use_pretrain_2"], info=translations["not_use_pretrain_info"], value=False, interactive=True)
908
+ custom_pretrain = gr.Checkbox(label=translations["custom_pretrain"], info=translations["custom_pretrain_info"], value=False, interactive=True)
909
+ with gr.Row():
910
+ vocoders = gr.Radio(label=translations["vocoder"], info=translations["vocoder_info"], choices=["Default", "MRF-HiFi-GAN", "RefineGAN"], value="Default", interactive=True)
911
+ with gr.Row():
912
+ deterministic = gr.Checkbox(label=translations["deterministic"], info=translations["deterministic_info"], value=False, interactive=True)
913
+ benchmark = gr.Checkbox(label=translations["benchmark"], info=translations["benchmark_info"], value=False, interactive=True)
914
+ with gr.Row():
915
+ model_author = gr.Textbox(label=translations["training_author"], info=translations["training_author_info"], value="", placeholder=translations["training_author"], interactive=True)
916
+ with gr.Row():
917
+ with gr.Column():
918
+ with gr.Accordion(translations["custom_pretrain_info"], open=False, visible=custom_pretrain.value and not not_use_pretrain.value) as pretrain_setting:
919
+ pretrained_D = gr.Dropdown(label=translations["pretrain_file"].format(dg="D"), choices=pretrainedD, value=pretrainedD[0] if len(pretrainedD) > 0 else '', interactive=True, allow_custom_value=True)
920
+ pretrained_G = gr.Dropdown(label=translations["pretrain_file"].format(dg="G"), choices=pretrainedG, value=pretrainedG[0] if len(pretrainedG) > 0 else '', interactive=True, allow_custom_value=True)
921
+ refesh_pretrain = gr.Button(translations["refesh"], scale=2)
922
+ with gr.Row():
923
+ training_info = gr.Textbox(label=translations["train_info"], value="", interactive=False)
924
+ with gr.Row():
925
+ with gr.Column():
926
+ with gr.Accordion(translations["export_model"], open=False):
927
+ with gr.Row():
928
+ model_file= gr.Dropdown(label=translations["model_name"], choices=model_name, value=model_name[0] if len(model_name) >= 1 else "", interactive=True, allow_custom_value=True)
929
+ index_file = gr.Dropdown(label=translations["index_path"], choices=index_path, value=index_path[0] if len(index_path) >= 1 else "", interactive=True, allow_custom_value=True)
930
+ with gr.Row():
931
+ refesh_file = gr.Button(f"1. {translations['refesh']}", scale=2)
932
+ zip_model = gr.Button(translations["zip_model"], variant="primary", scale=2)
933
+ with gr.Row():
934
+ zip_output = gr.File(label=translations["output_zip"], file_types=[".zip"], interactive=False, visible=False)
935
+ with gr.Row():
936
+ vocoders.change(fn=pitch_guidance_lock, inputs=[vocoders], outputs=[training_f0])
937
+ training_f0.change(fn=vocoders_lock, inputs=[training_f0, vocoders], outputs=[vocoders])
938
+ unlock_full_method4.change(fn=unlock_f0, inputs=[unlock_full_method4], outputs=[extract_method])
939
+ with gr.Row():
940
+ refesh_file.click(fn=change_models_choices, inputs=[], outputs=[model_file, index_file])
941
+ zip_model.click(fn=zip_file, inputs=[training_name, model_file, index_file], outputs=[zip_output])
942
+ dataset_path.change(fn=lambda folder: os.makedirs(folder, exist_ok=True), inputs=[dataset_path], outputs=[])
943
+ with gr.Row():
944
+ upload.change(fn=visible, inputs=[upload], outputs=[upload_dataset])
945
+ overtraining_detector.change(fn=visible, inputs=[overtraining_detector], outputs=[threshold])
946
+ clean_dataset.change(fn=visible, inputs=[clean_dataset], outputs=[clean_dataset_strength])
947
+ with gr.Row():
948
+ custom_dataset.change(fn=lambda custom_dataset: [visible(custom_dataset), "dataset"],inputs=[custom_dataset], outputs=[dataset_path, dataset_path])
949
+ training_ver.change(fn=unlock_vocoder, inputs=[training_ver, vocoders], outputs=[vocoders])
950
+ vocoders.change(fn=unlock_ver, inputs=[training_ver, vocoders], outputs=[training_ver])
951
+ upload_dataset.upload(
952
+ fn=lambda files, folder: [shutil.move(f.name, os.path.join(folder, os.path.split(f.name)[1])) for f in files] if folder != "" else gr_warning(translations["dataset_folder1"]),
953
+ inputs=[upload_dataset, dataset_path],
954
+ outputs=[],
955
+ api_name="upload_dataset"
956
+ )
957
+ with gr.Row():
958
+ not_use_pretrain.change(fn=lambda a, b: visible(a and not b), inputs=[custom_pretrain, not_use_pretrain], outputs=[pretrain_setting])
959
+ custom_pretrain.change(fn=lambda a, b: visible(a and not b), inputs=[custom_pretrain, not_use_pretrain], outputs=[pretrain_setting])
960
+ refesh_pretrain.click(fn=change_pretrained_choices, inputs=[], outputs=[pretrained_D, pretrained_G])
961
+ with gr.Row():
962
+ preprocess_button.click(
963
+ fn=preprocess,
964
+ inputs=[
965
+ training_name,
966
+ training_sr,
967
+ cpu_core,
968
+ preprocess_cut,
969
+ process_effects,
970
+ dataset_path,
971
+ clean_dataset,
972
+ clean_dataset_strength
973
+ ],
974
+ outputs=[preprocess_info],
975
+ api_name="preprocess"
976
+ )
977
+ with gr.Row():
978
+ embed_mode2.change(fn=visible_embedders, inputs=[embed_mode2], outputs=[extract_embedders])
979
+ extract_method.change(fn=hoplength_show, inputs=[extract_method], outputs=[extract_hop_length])
980
+ extract_embedders.change(fn=lambda extract_embedders: visible(extract_embedders == "custom"), inputs=[extract_embedders], outputs=[extract_embedders_custom])
981
+ with gr.Row():
982
+ extract_button.click(
983
+ fn=extract,
984
+ inputs=[
985
+ training_name,
986
+ training_ver,
987
+ extract_method,
988
+ training_f0,
989
+ extract_hop_length,
990
+ cpu_core,
991
+ gpu_number,
992
+ training_sr,
993
+ extract_embedders,
994
+ extract_embedders_custom,
995
+ onnx_f0_mode2,
996
+ embed_mode2
997
+ ],
998
+ outputs=[extract_info],
999
+ api_name="extract"
1000
+ )
1001
+ with gr.Row():
1002
+ index_button.click(
1003
+ fn=create_index,
1004
+ inputs=[
1005
+ training_name,
1006
+ training_ver,
1007
+ index_algorithm
1008
+ ],
1009
+ outputs=[training_info],
1010
+ api_name="create_index"
1011
+ )
1012
+ with gr.Row():
1013
+ training_button.click(
1014
+ fn=training,
1015
+ inputs=[
1016
+ training_name,
1017
+ training_ver,
1018
+ save_epochs,
1019
+ save_only_latest,
1020
+ save_every_weights,
1021
+ total_epochs,
1022
+ training_sr,
1023
+ train_batch_size,
1024
+ gpu_number,
1025
+ training_f0,
1026
+ not_use_pretrain,
1027
+ custom_pretrain,
1028
+ pretrained_G,
1029
+ pretrained_D,
1030
+ overtraining_detector,
1031
+ threshold,
1032
+ clean_up,
1033
+ cache_in_gpu,
1034
+ model_author,
1035
+ vocoders,
1036
+ checkpointing1,
1037
+ deterministic,
1038
+ benchmark
1039
+ ],
1040
+ outputs=[training_info],
1041
+ api_name="training_model"
1042
+ )
1043
+
1044
  with gr.TabItem(translations["audio_editing"], visible=configs.get("audioldm2", True)):
1045
  gr.Markdown(translations["audio_editing_info"])
1046
  with gr.Row():
 
1362
  api_name="create_dataset"
1363
  )
1364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1365
  with gr.TabItem(translations["fushion"], visible=configs.get("fushion_tab", True)):
1366
  gr.Markdown(translations["fushion_markdown"])
1367
  with gr.Row():