Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
# import time | |
import torch | |
from torch.nn import functional as F | |
import torch.nn as nn | |
def encode_segmentation_rgb(segmentation, no_neck=True): | |
parse = segmentation | |
face_part_ids = [1, 2, 3, 4, 5, 6, 10, 12, 13] if no_neck else [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14] | |
mouth_id = 11 | |
# hair_id = 17 | |
face_map = np.zeros([parse.shape[0], parse.shape[1]]) | |
mouth_map = np.zeros([parse.shape[0], parse.shape[1]]) | |
# hair_map = np.zeros([parse.shape[0], parse.shape[1]]) | |
for valid_id in face_part_ids: | |
valid_index = np.where(parse==valid_id) | |
face_map[valid_index] = 255 | |
valid_index = np.where(parse==mouth_id) | |
mouth_map[valid_index] = 255 | |
# valid_index = np.where(parse==hair_id) | |
# hair_map[valid_index] = 255 | |
#return np.stack([face_map, mouth_map,hair_map], axis=2) | |
return np.stack([face_map, mouth_map], axis=2) | |
class SoftErosion(nn.Module): | |
def __init__(self, kernel_size=15, threshold=0.6, iterations=1): | |
super(SoftErosion, self).__init__() | |
r = kernel_size // 2 | |
self.padding = r | |
self.iterations = iterations | |
self.threshold = threshold | |
# Create kernel | |
y_indices, x_indices = torch.meshgrid(torch.arange(0., kernel_size), torch.arange(0., kernel_size)) | |
dist = torch.sqrt((x_indices - r) ** 2 + (y_indices - r) ** 2) | |
kernel = dist.max() - dist | |
kernel /= kernel.sum() | |
kernel = kernel.view(1, 1, *kernel.shape) | |
self.register_buffer('weight', kernel) | |
def forward(self, x): | |
x = x.float() | |
for i in range(self.iterations - 1): | |
x = torch.min(x, F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding)) | |
x = F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding) | |
mask = x >= self.threshold | |
x[mask] = 1.0 | |
x[~mask] /= x[~mask].max() | |
return x, mask | |
def postprocess(swapped_face, target, target_mask,smooth_mask): | |
# target_mask = cv2.resize(target_mask, (self.size, self.size)) | |
mask_tensor = torch.from_numpy(target_mask.copy().transpose((2, 0, 1))).float().mul_(1/255.0).cuda() | |
face_mask_tensor = mask_tensor[0] + mask_tensor[1] | |
soft_face_mask_tensor, _ = smooth_mask(face_mask_tensor.unsqueeze_(0).unsqueeze_(0)) | |
soft_face_mask_tensor.squeeze_() | |
soft_face_mask = soft_face_mask_tensor.cpu().numpy() | |
soft_face_mask = soft_face_mask[:, :, np.newaxis] | |
result = swapped_face * soft_face_mask + target * (1 - soft_face_mask) | |
result = result[:,:,::-1]# .astype(np.uint8) | |
return result | |
def reverse2wholeimage(b_align_crop_tenor_list,swaped_imgs, mats, crop_size, oriimg, logoclass, save_path = '', \ | |
no_simswaplogo = False,pasring_model =None,norm = None, use_mask = False): | |
target_image_list = [] | |
img_mask_list = [] | |
if use_mask: | |
smooth_mask = SoftErosion(kernel_size=17, threshold=0.9, iterations=7).cuda() | |
else: | |
pass | |
# print(len(swaped_imgs)) | |
# print(mats) | |
# print(len(b_align_crop_tenor_list)) | |
for swaped_img, mat ,source_img in zip(swaped_imgs, mats,b_align_crop_tenor_list): | |
swaped_img = swaped_img.cpu().detach().numpy().transpose((1, 2, 0)) | |
img_white = np.full((crop_size,crop_size), 255, dtype=float) | |
# inverse the Affine transformation matrix | |
mat_rev = np.zeros([2,3]) | |
div1 = mat[0][0]*mat[1][1]-mat[0][1]*mat[1][0] | |
mat_rev[0][0] = mat[1][1]/div1 | |
mat_rev[0][1] = -mat[0][1]/div1 | |
mat_rev[0][2] = -(mat[0][2]*mat[1][1]-mat[0][1]*mat[1][2])/div1 | |
div2 = mat[0][1]*mat[1][0]-mat[0][0]*mat[1][1] | |
mat_rev[1][0] = mat[1][0]/div2 | |
mat_rev[1][1] = -mat[0][0]/div2 | |
mat_rev[1][2] = -(mat[0][2]*mat[1][0]-mat[0][0]*mat[1][2])/div2 | |
orisize = (oriimg.shape[1], oriimg.shape[0]) | |
if use_mask: | |
source_img_norm = norm(source_img) | |
source_img_512 = F.interpolate(source_img_norm,size=(512,512)) | |
out = pasring_model(source_img_512)[0] | |
parsing = out.squeeze(0).detach().cpu().numpy().argmax(0) | |
vis_parsing_anno = parsing.copy().astype(np.uint8) | |
tgt_mask = encode_segmentation_rgb(vis_parsing_anno) | |
if tgt_mask.sum() >= 5000: | |
# face_mask_tensor = tgt_mask[...,0] + tgt_mask[...,1] | |
target_mask = cv2.resize(tgt_mask, (crop_size, crop_size)) | |
# print(source_img) | |
target_image_parsing = postprocess(swaped_img, source_img[0].cpu().detach().numpy().transpose((1, 2, 0)), target_mask,smooth_mask) | |
target_image = cv2.warpAffine(target_image_parsing, mat_rev, orisize) | |
# target_image_parsing = cv2.warpAffine(swaped_img, mat_rev, orisize) | |
else: | |
target_image = cv2.warpAffine(swaped_img, mat_rev, orisize)[..., ::-1] | |
else: | |
target_image = cv2.warpAffine(swaped_img, mat_rev, orisize) | |
# source_image = cv2.warpAffine(source_img, mat_rev, orisize) | |
img_white = cv2.warpAffine(img_white, mat_rev, orisize) | |
img_white[img_white>20] =255 | |
img_mask = img_white | |
# if use_mask: | |
# kernel = np.ones((40,40),np.uint8) | |
# img_mask = cv2.erode(img_mask,kernel,iterations = 1) | |
# else: | |
kernel = np.ones((40,40),np.uint8) | |
img_mask = cv2.erode(img_mask,kernel,iterations = 1) | |
kernel_size = (20, 20) | |
blur_size = tuple(2*i+1 for i in kernel_size) | |
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0) | |
# kernel = np.ones((10,10),np.uint8) | |
# img_mask = cv2.erode(img_mask,kernel,iterations = 1) | |
img_mask /= 255 | |
img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1]) | |
# pasing mask | |
# target_image_parsing = postprocess(target_image, source_image, tgt_mask) | |
if use_mask: | |
target_image = np.array(target_image, dtype=np.float) * 255 | |
else: | |
target_image = np.array(target_image, dtype=np.float)[..., ::-1] * 255 | |
img_mask_list.append(img_mask) | |
target_image_list.append(target_image) | |
# target_image /= 255 | |
# target_image = 0 | |
img = np.array(oriimg, dtype=np.float) | |
for img_mask, target_image in zip(img_mask_list, target_image_list): | |
img = img_mask * target_image + (1-img_mask) * img | |
final_img = img.astype(np.uint8) | |
if not no_simswaplogo: | |
final_img = logoclass.apply_frames(final_img) | |
cv2.imwrite(save_path, final_img) | |