Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import glob | |
import torch | |
import shutil | |
import numpy as np | |
from tqdm import tqdm | |
from util.reverse2original import reverse2wholeimage | |
import moviepy.editor as mp | |
from moviepy.editor import AudioFileClip, VideoFileClip | |
from moviepy.video.io.ImageSequenceClip import ImageSequenceClip | |
import time | |
from util.add_watermark import watermark_image | |
from util.norm import SpecificNorm | |
import torch.nn.functional as F | |
from parsing_model.model import BiSeNet | |
def _totensor(array): | |
tensor = torch.from_numpy(array) | |
img = tensor.transpose(0, 1).transpose(0, 2).contiguous() | |
return img.float().div(255) | |
def video_swap(video_path, target_id_norm_list,source_specific_id_nonorm_list,id_thres, swap_model, detect_model, save_path, temp_results_dir='./temp_results', crop_size=224, no_simswaplogo = False,use_mask =False): | |
video_forcheck = VideoFileClip(video_path) | |
if video_forcheck.audio is None: | |
no_audio = True | |
else: | |
no_audio = False | |
del video_forcheck | |
if not no_audio: | |
video_audio_clip = AudioFileClip(video_path) | |
video = cv2.VideoCapture(video_path) | |
logoclass = watermark_image('./simswaplogo/simswaplogo.png') | |
ret = True | |
frame_index = 0 | |
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | |
# video_WIDTH = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
# video_HEIGHT = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fps = video.get(cv2.CAP_PROP_FPS) | |
if os.path.exists(temp_results_dir): | |
shutil.rmtree(temp_results_dir) | |
spNorm =SpecificNorm() | |
mse = torch.nn.MSELoss().cuda() | |
if use_mask: | |
n_classes = 19 | |
net = BiSeNet(n_classes=n_classes) | |
net.cuda() | |
save_pth = os.path.join('./parsing_model/checkpoint', '79999_iter.pth') | |
net.load_state_dict(torch.load(save_pth)) | |
net.eval() | |
else: | |
net =None | |
# while ret: | |
for frame_index in tqdm(range(frame_count)): | |
ret, frame = video.read() | |
if ret: | |
detect_results = detect_model.get(frame,crop_size) | |
if detect_results is not None: | |
# print(frame_index) | |
if not os.path.exists(temp_results_dir): | |
os.mkdir(temp_results_dir) | |
frame_align_crop_list = detect_results[0] | |
frame_mat_list = detect_results[1] | |
id_compare_values = [] | |
frame_align_crop_tenor_list = [] | |
for frame_align_crop in frame_align_crop_list: | |
# BGR TO RGB | |
# frame_align_crop_RGB = frame_align_crop[...,::-1] | |
frame_align_crop_tenor = _totensor(cv2.cvtColor(frame_align_crop,cv2.COLOR_BGR2RGB))[None,...].cuda() | |
frame_align_crop_tenor_arcnorm = spNorm(frame_align_crop_tenor) | |
frame_align_crop_tenor_arcnorm_downsample = F.interpolate(frame_align_crop_tenor_arcnorm, size=(112,112)) | |
frame_align_crop_crop_id_nonorm = swap_model.netArc(frame_align_crop_tenor_arcnorm_downsample) | |
id_compare_values.append([]) | |
for source_specific_id_nonorm_tmp in source_specific_id_nonorm_list: | |
id_compare_values[-1].append(mse(frame_align_crop_crop_id_nonorm,source_specific_id_nonorm_tmp).detach().cpu().numpy()) | |
frame_align_crop_tenor_list.append(frame_align_crop_tenor) | |
id_compare_values_array = np.array(id_compare_values).transpose(1,0) | |
min_indexs = np.argmin(id_compare_values_array,axis=0) | |
min_value = np.min(id_compare_values_array,axis=0) | |
swap_result_list = [] | |
swap_result_matrix_list = [] | |
swap_result_ori_pic_list = [] | |
for tmp_index, min_index in enumerate(min_indexs): | |
if min_value[tmp_index] < id_thres: | |
swap_result = swap_model(None, frame_align_crop_tenor_list[tmp_index], target_id_norm_list[min_index], None, True)[0] | |
swap_result_list.append(swap_result) | |
swap_result_matrix_list.append(frame_mat_list[tmp_index]) | |
swap_result_ori_pic_list.append(frame_align_crop_tenor_list[tmp_index]) | |
else: | |
pass | |
if len(swap_result_list) !=0: | |
reverse2wholeimage(swap_result_ori_pic_list,swap_result_list, swap_result_matrix_list, crop_size, frame, logoclass,\ | |
os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)),no_simswaplogo,pasring_model =net,use_mask=use_mask, norm = spNorm) | |
else: | |
if not os.path.exists(temp_results_dir): | |
os.mkdir(temp_results_dir) | |
frame = frame.astype(np.uint8) | |
if not no_simswaplogo: | |
frame = logoclass.apply_frames(frame) | |
cv2.imwrite(os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)), frame) | |
else: | |
if not os.path.exists(temp_results_dir): | |
os.mkdir(temp_results_dir) | |
frame = frame.astype(np.uint8) | |
if not no_simswaplogo: | |
frame = logoclass.apply_frames(frame) | |
cv2.imwrite(os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)), frame) | |
else: | |
break | |
video.release() | |
# image_filename_list = [] | |
path = os.path.join(temp_results_dir,'*.jpg') | |
image_filenames = sorted(glob.glob(path)) | |
clips = ImageSequenceClip(image_filenames,fps = fps) | |
if not no_audio: | |
clips = clips.set_audio(video_audio_clip) | |
clips.write_videofile(save_path,audio_codec='aac') | |