Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +26 -0
- run_faceswap.py +77 -0
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
+
from run_faceswap import run_faceswap
|
5 |
+
|
6 |
+
def swap_faces(base_image, face_image):
|
7 |
+
try:
|
8 |
+
result = run_faceswap(base_image, face_image)
|
9 |
+
result_img = Image.fromarray(result)
|
10 |
+
return result_img
|
11 |
+
except Exception as e:
|
12 |
+
return f"Error al generar imagen: {str(e)}"
|
13 |
+
|
14 |
+
iface = gr.Interface(
|
15 |
+
fn=swap_faces,
|
16 |
+
inputs=[
|
17 |
+
gr.Image(type="pil", label="Imagen base (cuerpo en pista)"),
|
18 |
+
gr.Image(type="pil", label="Foto de la cara (webcam)")
|
19 |
+
],
|
20 |
+
outputs=gr.Image(type="pil", label="Resultado final"),
|
21 |
+
title="SimSwap - Reemplazo realista de rostro",
|
22 |
+
description="Sube una imagen con cuerpo/fondo y una con el rostro a reemplazar. El sistema mantendrá todo igual salvo el rostro."
|
23 |
+
)
|
24 |
+
|
25 |
+
if __name__ == "__main__":
|
26 |
+
iface.launch()
|
run_faceswap.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision import transforms
|
10 |
+
from types import SimpleNamespace
|
11 |
+
|
12 |
+
from SimSwap.models.models import create_model
|
13 |
+
from SimSwap.arcface.model import Backbone
|
14 |
+
|
15 |
+
DEVICE = "cpu"
|
16 |
+
|
17 |
+
opt_dict = {
|
18 |
+
"isTrain": False,
|
19 |
+
"Arc_path": "arcface_model.tar",
|
20 |
+
"which_epoch": "latest",
|
21 |
+
"load_pretrain": "checkpoints/simswap",
|
22 |
+
"crop_size": 224,
|
23 |
+
"resize_or_crop": "none",
|
24 |
+
"gan_mode": "hinge",
|
25 |
+
"no_ganFeat_loss": True,
|
26 |
+
"no_vgg_loss": True,
|
27 |
+
"lambda_feat": 10.0,
|
28 |
+
"lambda_rec": 10.0,
|
29 |
+
"beta1": 0.5,
|
30 |
+
"lr": 0.0002,
|
31 |
+
"continue_train": False,
|
32 |
+
"name": "simswap",
|
33 |
+
"checkpoints_dir": "./checkpoints",
|
34 |
+
"gpu_ids": [],
|
35 |
+
"use_mask": True,
|
36 |
+
"dataset_mode": "Swap",
|
37 |
+
"model": "fs_swap"
|
38 |
+
}
|
39 |
+
opt = SimpleNamespace(**opt_dict)
|
40 |
+
|
41 |
+
model = create_model(opt)
|
42 |
+
model.setup(opt)
|
43 |
+
model.device = torch.device("cpu")
|
44 |
+
if hasattr(model, 'netG'):
|
45 |
+
model.netG = model.netG.cpu()
|
46 |
+
model.eval()
|
47 |
+
|
48 |
+
arcface = Backbone(50, 0.6, 'ir_se')
|
49 |
+
arcface.load_state_dict(torch.load(opt.Arc_path, map_location=DEVICE))
|
50 |
+
arcface.eval().to(DEVICE)
|
51 |
+
|
52 |
+
transform = transforms.Compose([
|
53 |
+
transforms.Resize((224, 224)),
|
54 |
+
transforms.ToTensor()
|
55 |
+
])
|
56 |
+
|
57 |
+
def run_faceswap(base_image_pil, face_image_pil):
|
58 |
+
base_img = cv2.cvtColor(np.array(base_image_pil), cv2.COLOR_RGB2BGR)
|
59 |
+
id_img = face_image_pil.convert("RGB").resize((112, 112))
|
60 |
+
id_tensor = transform(id_img).unsqueeze(0).to(DEVICE)
|
61 |
+
|
62 |
+
with torch.no_grad():
|
63 |
+
id_embedding = arcface(id_tensor)
|
64 |
+
id_embedding = id_embedding / id_embedding.norm(dim=-1, keepdim=True)
|
65 |
+
|
66 |
+
temp_input_path = 'temp_base.jpg'
|
67 |
+
cv2.imwrite(temp_input_path, base_img)
|
68 |
+
|
69 |
+
opt.pic_a_path = temp_input_path
|
70 |
+
opt.pic_b_path = None
|
71 |
+
model.set_input(opt, id_embedding)
|
72 |
+
model.test()
|
73 |
+
swapped = model.get_current_visuals()['synthesized_image']
|
74 |
+
|
75 |
+
result_np = swapped.squeeze().permute(1, 2, 0).cpu().numpy() * 255
|
76 |
+
result_np = result_np.astype(np.uint8)
|
77 |
+
return result_np
|