NeoSerge commited on
Commit
4992f2d
·
verified ·
1 Parent(s): 4aa9feb

Delete SimSwap/models/models.py

Browse files
Files changed (1) hide show
  1. SimSwap/models/models.py +0 -177
SimSwap/models/models.py DELETED
@@ -1,177 +0,0 @@
1
- import math
2
- import torch
3
- import torch.nn.functional as F
4
- from torch import nn
5
- from torch.nn import Parameter
6
- from .config import device, num_classes
7
-
8
-
9
- def create_model(opt):
10
- #from .pix2pixHD_model import Pix2PixHDModel, InferenceModel
11
- from .fs_model import fsModel
12
- model = fsModel()
13
-
14
- model.initialize(opt)
15
- if opt.verbose:
16
- print("model [%s] was created" % (model.name()))
17
-
18
- if opt.isTrain and len(opt.gpu_ids) and not opt.fp16:
19
- model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids)
20
-
21
- return model
22
-
23
-
24
-
25
- class SEBlock(nn.Module):
26
- def __init__(self, channel, reduction=16):
27
- super(SEBlock, self).__init__()
28
- self.avg_pool = nn.AdaptiveAvgPool2d(1)
29
- self.fc = nn.Sequential(
30
- nn.Linear(channel, channel // reduction),
31
- nn.PReLU(),
32
- nn.Linear(channel // reduction, channel),
33
- nn.Sigmoid()
34
- )
35
-
36
- def forward(self, x):
37
- b, c, _, _ = x.size()
38
- y = self.avg_pool(x).view(b, c)
39
- y = self.fc(y).view(b, c, 1, 1)
40
- return x * y
41
-
42
-
43
- class IRBlock(nn.Module):
44
- expansion = 1
45
-
46
- def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True):
47
- super(IRBlock, self).__init__()
48
- self.bn0 = nn.BatchNorm2d(inplanes)
49
- self.conv1 = conv3x3(inplanes, inplanes)
50
- self.bn1 = nn.BatchNorm2d(inplanes)
51
- self.prelu = nn.PReLU()
52
- self.conv2 = conv3x3(inplanes, planes, stride)
53
- self.bn2 = nn.BatchNorm2d(planes)
54
- self.downsample = downsample
55
- self.stride = stride
56
- self.use_se = use_se
57
- if self.use_se:
58
- self.se = SEBlock(planes)
59
-
60
- def forward(self, x):
61
- residual = x
62
- out = self.bn0(x)
63
- out = self.conv1(out)
64
- out = self.bn1(out)
65
- out = self.prelu(out)
66
-
67
- out = self.conv2(out)
68
- out = self.bn2(out)
69
- if self.use_se:
70
- out = self.se(out)
71
-
72
- if self.downsample is not None:
73
- residual = self.downsample(x)
74
-
75
- out += residual
76
- out = self.prelu(out)
77
-
78
- return out
79
-
80
-
81
- class ResNet(nn.Module):
82
-
83
- def __init__(self, block, layers, use_se=True):
84
- self.inplanes = 64
85
- self.use_se = use_se
86
- super(ResNet, self).__init__()
87
- self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, bias=False)
88
- self.bn1 = nn.BatchNorm2d(64)
89
- self.prelu = nn.PReLU()
90
- self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
91
- self.layer1 = self._make_layer(block, 64, layers[0])
92
- self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
93
- self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
94
- self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
95
- self.bn2 = nn.BatchNorm2d(512)
96
- self.dropout = nn.Dropout()
97
- self.fc = nn.Linear(512 * 7 * 7, 512)
98
- self.bn3 = nn.BatchNorm1d(512)
99
-
100
- for m in self.modules():
101
- if isinstance(m, nn.Conv2d):
102
- nn.init.xavier_normal_(m.weight)
103
- elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
104
- nn.init.constant_(m.weight, 1)
105
- nn.init.constant_(m.bias, 0)
106
- elif isinstance(m, nn.Linear):
107
- nn.init.xavier_normal_(m.weight)
108
- nn.init.constant_(m.bias, 0)
109
-
110
- def _make_layer(self, block, planes, blocks, stride=1):
111
- downsample = None
112
- if stride != 1 or self.inplanes != planes * block.expansion:
113
- downsample = nn.Sequential(
114
- nn.Conv2d(self.inplanes, planes * block.expansion,
115
- kernel_size=1, stride=stride, bias=False),
116
- nn.BatchNorm2d(planes * block.expansion),
117
- )
118
-
119
- layers = []
120
- layers.append(block(self.inplanes, planes, stride, downsample, use_se=self.use_se))
121
- self.inplanes = planes
122
- for i in range(1, blocks):
123
- layers.append(block(self.inplanes, planes, use_se=self.use_se))
124
-
125
- return nn.Sequential(*layers)
126
-
127
- def forward(self, x):
128
- x = self.conv1(x)
129
- x = self.bn1(x)
130
- x = self.prelu(x)
131
- x = self.maxpool(x)
132
-
133
- x = self.layer1(x)
134
- x = self.layer2(x)
135
- x = self.layer3(x)
136
- x = self.layer4(x)
137
-
138
- x = self.bn2(x)
139
- x = self.dropout(x)
140
- x = x.view(x.size(0), -1)
141
- x = self.fc(x)
142
- x = self.bn3(x)
143
-
144
- return x
145
-
146
-
147
- class ArcMarginModel(nn.Module):
148
- def __init__(self, args):
149
- super(ArcMarginModel, self).__init__()
150
-
151
- self.weight = Parameter(torch.FloatTensor(num_classes, args.emb_size))
152
- nn.init.xavier_uniform_(self.weight)
153
-
154
- self.easy_margin = args.easy_margin
155
- self.m = args.margin_m
156
- self.s = args.margin_s
157
-
158
- self.cos_m = math.cos(self.m)
159
- self.sin_m = math.sin(self.m)
160
- self.th = math.cos(math.pi - self.m)
161
- self.mm = math.sin(math.pi - self.m) * self.m
162
-
163
- def forward(self, input, label):
164
- x = F.normalize(input)
165
- W = F.normalize(self.weight)
166
- cosine = F.linear(x, W)
167
- sine = torch.sqrt(1.0 - torch.pow(cosine, 2))
168
- phi = cosine * self.cos_m - sine * self.sin_m # cos(theta + m)
169
- if self.easy_margin:
170
- phi = torch.where(cosine > 0, phi, cosine)
171
- else:
172
- phi = torch.where(cosine > self.th, phi, cosine - self.mm)
173
- one_hot = torch.zeros(cosine.size(), device=device)
174
- one_hot.scatter_(1, label.view(-1, 1).long(), 1)
175
- output = (one_hot * phi) + ((1.0 - one_hot) * cosine)
176
- output *= self.s
177
- return output