Image-to-Prompt / app.py
NeuralFalcon's picture
Create app.py
4255784 verified
from transformers import AutoProcessor, AutoModelForImageTextToText
import torch
# https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct
# https://huggingface.co/HuggingFaceTB/SmolVLM2-500M-Video-Instruct
# model_path = "HuggingFaceTB/SmolVLM2-2.2B-Instruct"
# model_path = "HuggingFaceTB/SmolVLM2-500M-Video-Instruct"
# Load model & processor
model_name= "SmolVLM2-2.2B-Instruct"
model_path=f"HuggingFaceTB/{model_name}"
processor = AutoProcessor.from_pretrained(model_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForImageTextToText.from_pretrained(
model_path,
torch_dtype=torch.float16, # Use FP16 for better performance on T4
device_map="auto" # Auto-assign model to GPU
).to(device)
import torch
import os
def describe_image(image_path, user_prompt="Describe the image in detail.",system_role=""):
global model, processor
messages=[]
if not os.path.exists(image_path):
return None
if system_role!="":
messages.append( {
"role": "system",
"content": [{"type": "text", "text": system_role}]
})
messages.append(
{
"role": "user",
"content": [
{"type": "text", "text": user_prompt},
{"type": "image", "path": image_path},
]
}
)
# Prepare input
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(model.device)
# Convert only float32 tensors to float16
for k, v in inputs.items():
if v.dtype == torch.float32:
inputs[k] = v.to(torch.float16)
# Generate response
generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=1024)
# Decode and return output
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
return generated_texts[0].split("Assistant:")[-1].replace("\n\n\n\n\n\n", "").strip()
import gradio as gr
def ui():
return gr.Interface(
fn=describe_image,
inputs=[
gr.Image(type="filepath", label="Upload Image"),
gr.Textbox(value="Describe the image in detail.", label="User Prompt"),
gr.Textbox(value="", label="System Role (Optional)")
],
outputs=gr.Textbox(label="Image Description"),
title="Image Captioning App",
description="Upload an image and customize prompts to get a detailed description."
)
demo=ui()
demo.queue().launch()