Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tempfile
|
3 |
+
import uuid
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import numpy as np
|
7 |
+
import soundfile as sf
|
8 |
+
from kittentts import KittenTTS
|
9 |
+
from tqdm.auto import tqdm
|
10 |
+
# Initialize the TTS model
|
11 |
+
model = KittenTTS("KittenML/kitten-tts-nano-0.1")
|
12 |
+
|
13 |
+
def split_text_into_chunks(text, chunk_size=400):
|
14 |
+
"""
|
15 |
+
Split long text into smaller chunks of max length `chunk_size`.
|
16 |
+
"""
|
17 |
+
# Split by punctuation followed by space (preserves sentence boundaries)
|
18 |
+
sentences = re.split(r'(?<=[.!?]) +', text)
|
19 |
+
|
20 |
+
chunks = []
|
21 |
+
current_chunk = ""
|
22 |
+
|
23 |
+
for sentence in sentences:
|
24 |
+
if len(current_chunk) + len(sentence) > chunk_size:
|
25 |
+
if current_chunk:
|
26 |
+
chunks.append(current_chunk.strip())
|
27 |
+
current_chunk = ""
|
28 |
+
current_chunk += sentence + " "
|
29 |
+
|
30 |
+
if current_chunk:
|
31 |
+
chunks.append(current_chunk.strip())
|
32 |
+
|
33 |
+
return chunks
|
34 |
+
|
35 |
+
def generate_speech(text, voice, speed):
|
36 |
+
"""
|
37 |
+
Generate speech from long text in a memory-efficient way.
|
38 |
+
Writes chunks directly to a shared WAV file instead of keeping them in memory.
|
39 |
+
"""
|
40 |
+
if not text.strip():
|
41 |
+
return None, "Please enter some text to generate speech."
|
42 |
+
|
43 |
+
try:
|
44 |
+
# Break text into manageable chunks
|
45 |
+
chunks = split_text_into_chunks(text, chunk_size=400)
|
46 |
+
|
47 |
+
# Shared output directory (update this path to your shared disk)
|
48 |
+
shared_dir = "./saved_audio"
|
49 |
+
os.makedirs(shared_dir, exist_ok=True)
|
50 |
+
|
51 |
+
unique_filename = f"kitten_tts_{uuid.uuid4()}.wav"
|
52 |
+
output_path = os.path.join(shared_dir, unique_filename)
|
53 |
+
|
54 |
+
# Open the WAV file for writing
|
55 |
+
with sf.SoundFile(output_path, mode='w', samplerate=24000, channels=1, subtype='PCM_16') as f:
|
56 |
+
for chunk in tqdm(chunks, desc="Streaming audio to disk", unit="chunk"):
|
57 |
+
audio = model.generate(chunk, voice=voice, speed=speed)
|
58 |
+
f.write(audio) # Write audio directly to disk
|
59 |
+
|
60 |
+
return output_path
|
61 |
+
except Exception as e:
|
62 |
+
return None, f"Error during TTS generation: {str(e)}"
|
63 |
+
|
64 |
+
def get_available_voices():
|
65 |
+
"""Get list of available voices from the model."""
|
66 |
+
try:
|
67 |
+
voices = model.available_voices
|
68 |
+
return voices if voices else ["expr-voice-5-m"]
|
69 |
+
except:
|
70 |
+
return ["expr-voice-5-m"]
|
71 |
+
|
72 |
+
# Get voices once on load
|
73 |
+
available_voices = get_available_voices()
|
74 |
+
|
75 |
+
# Create Gradio UI
|
76 |
+
with gr.Blocks(title="KittenTTS - Text to Speech", theme=gr.themes.Soft()) as app:
|
77 |
+
gr.Markdown("# 🐱 KittenTTS - Text to Speech Generator")
|
78 |
+
gr.Markdown("Convert your text to high-quality speech using the KittenTTS nano model!")
|
79 |
+
|
80 |
+
with gr.Row():
|
81 |
+
with gr.Column(scale=2):
|
82 |
+
text_input = gr.Textbox(
|
83 |
+
label="Text to Convert",
|
84 |
+
placeholder="Enter the text you want to convert to speech...",
|
85 |
+
lines=4,
|
86 |
+
max_lines=10
|
87 |
+
)
|
88 |
+
|
89 |
+
with gr.Row():
|
90 |
+
voice_dropdown = gr.Dropdown(
|
91 |
+
choices=available_voices,
|
92 |
+
value=available_voices[0],
|
93 |
+
label="Voice Selection",
|
94 |
+
info="Choose the voice for speech generation"
|
95 |
+
)
|
96 |
+
|
97 |
+
speed_slider = gr.Slider(
|
98 |
+
minimum=0.5,
|
99 |
+
maximum=2.0,
|
100 |
+
step=0.01,
|
101 |
+
value=1.25,
|
102 |
+
label="Speech Speed",
|
103 |
+
info="Adjust the speed of speech (0.5x to 2.0x)"
|
104 |
+
)
|
105 |
+
|
106 |
+
generate_btn = gr.Button("🎵 Generate Speech", variant="primary", size="lg")
|
107 |
+
|
108 |
+
with gr.Column(scale=1):
|
109 |
+
audio_output = gr.Audio(
|
110 |
+
label="Generated Speech",
|
111 |
+
type="filepath",
|
112 |
+
interactive=False,
|
113 |
+
autoplay=True
|
114 |
+
)
|
115 |
+
|
116 |
+
gr.Markdown("## 📝 Example Texts")
|
117 |
+
gr.Examples(
|
118 |
+
examples=[
|
119 |
+
["Hello! This is a test of the KittenTTS model.", available_voices[0], 1.25],
|
120 |
+
["The quick brown fox jumps over the lazy dog.", available_voices[0], 1.5],
|
121 |
+
["Welcome to the world of high-quality text-to-speech synthesis!", available_voices[0], 1.0],
|
122 |
+
],
|
123 |
+
inputs=[text_input, voice_dropdown, speed_slider],
|
124 |
+
outputs=[audio_output],
|
125 |
+
fn=generate_speech,
|
126 |
+
label="Click on an example to try it out",
|
127 |
+
# cache_examples="lazy"
|
128 |
+
)
|
129 |
+
|
130 |
+
with gr.Accordion("ℹ️ Model Information", open=False):
|
131 |
+
gr.Markdown("""
|
132 |
+
**Model:** `KittenML/kitten-tts-nano-0.1`
|
133 |
+
**Features:**
|
134 |
+
- High-quality text-to-speech synthesis
|
135 |
+
- Works without GPU acceleration
|
136 |
+
- Multiple voice options
|
137 |
+
- Adjustable speech speed
|
138 |
+
- 24kHz audio output
|
139 |
+
|
140 |
+
**Usage Instructions:**
|
141 |
+
1. Enter your text
|
142 |
+
2. Select a voice
|
143 |
+
3. Adjust the speech speed if needed
|
144 |
+
4. Click "Generate Speech"
|
145 |
+
""")
|
146 |
+
|
147 |
+
# Event Bindings
|
148 |
+
generate_btn.click(
|
149 |
+
fn=generate_speech,
|
150 |
+
inputs=[text_input, voice_dropdown, speed_slider],
|
151 |
+
outputs=[audio_output]
|
152 |
+
)
|
153 |
+
|
154 |
+
text_input.submit(
|
155 |
+
fn=generate_speech,
|
156 |
+
inputs=[text_input, voice_dropdown, speed_slider],
|
157 |
+
outputs=[audio_output]
|
158 |
+
)
|
159 |
+
|
160 |
+
# Run the app
|
161 |
+
if __name__ == "__main__":
|
162 |
+
app.queue().launch()
|