Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,43 @@
|
|
|
|
1 |
import torch
|
2 |
-
|
3 |
-
from
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
super(SimpleCNN, self).__init__()
|
8 |
-
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
|
9 |
-
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
|
10 |
-
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
|
11 |
-
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
|
12 |
-
self.relu = nn.ReLU()
|
13 |
-
self.dropout = nn.Dropout(0.5)
|
14 |
-
self._initialize_fc(num_classes)
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
x = self.fc2(x)
|
32 |
-
return x
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
state = torch.load(weights_path, map_location=device)
|
43 |
-
model.load_state_dict(state)
|
44 |
-
model.eval()
|
45 |
-
return model
|
|
|
1 |
+
import gradio as gr
|
2 |
import torch
|
3 |
+
from torchvision import transforms
|
4 |
+
from PIL import Image
|
5 |
+
from model import load_model
|
6 |
+
import numpy as np
|
7 |
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
model = load_model(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
class_names = [
|
12 |
+
'Alzheimer Disease',
|
13 |
+
'Mild Alzheimer Risk',
|
14 |
+
'Moderate Alzheimer Risk',
|
15 |
+
'Very Mild Alzheimer Risk',
|
16 |
+
'No Risk',
|
17 |
+
'Parkinson Disease'
|
18 |
+
]
|
19 |
|
20 |
+
transform = transforms.Compose([
|
21 |
+
transforms.Resize((448, 448)),
|
22 |
+
transforms.ToTensor(),
|
23 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
24 |
+
std=[0.229, 0.224, 0.225])
|
25 |
+
])
|
|
|
|
|
26 |
|
27 |
+
def predict(image):
|
28 |
+
image = image.convert("RGB")
|
29 |
+
tensor = transform(image).unsqueeze(0).to(device)
|
30 |
+
with torch.no_grad():
|
31 |
+
outputs = model(tensor)
|
32 |
+
probs = torch.nn.functional.softmax(outputs, dim=1)[0]
|
33 |
+
predicted = torch.argmax(probs).item()
|
34 |
+
confidence = probs[predicted].item() * 100
|
35 |
+
return {class_names[i]: float(probs[i]) for i in range(len(class_names))}
|
36 |
|
37 |
+
gr.Interface(
|
38 |
+
fn=predict,
|
39 |
+
inputs=gr.Image(type="pil"),
|
40 |
+
outputs=gr.Label(num_top_classes=3),
|
41 |
+
title="Vbai-DPA 2.2 (C Version)",
|
42 |
+
description="Upload an MRI and fMRI image to classify the risk level using the 'C' version of the Vbai-DPA 2.2 model."
|
43 |
+
).launch()
|
|
|
|
|
|
|
|