import torch import torch.nn as nn from huggingface_hub import hf_hub_download class SimpleCNN(nn.Module): def __init__(self, num_classes=6): super(SimpleCNN, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.relu = nn.ReLU() self.dropout = nn.Dropout(0.5) self._initialize_fc(num_classes) def _initialize_fc(self, num_classes): dummy_input = torch.zeros(1, 3, 448, 448) x = self.pool(self.relu(self.conv1(dummy_input))) x = self.pool(self.relu(self.conv2(x))) x = self.pool(self.relu(self.conv3(x))) x = x.view(x.size(0), -1) flattened_size = x.shape[1] self.fc1 = nn.Linear(flattened_size, 512) self.fc2 = nn.Linear(512, num_classes) def forward(self, x): x = self.pool(self.relu(self.conv1(x))) x = self.pool(self.relu(self.conv2(x))) x = self.pool(self.relu(self.conv3(x))) x = x.view(x.size(0), -1) x = self.dropout(self.relu(self.fc1(x))) x = self.fc2(x) return x def load_model(device: str = 'cpu'): """ Downloads and loads the pretrained SimpleCNN model for the 'c' version. """ torch_device = torch.device(device) weights_path = hf_hub_download( repo_id="Neurazum/Vbai-DPA-2.2", filename="Vbai-DPA 2.2c.pt", repo_type="model" ) model = SimpleCNN(num_classes=6).to(torch_device) state = torch.load(weights_path, map_location=torch_device) model.load_state_dict(state) model.eval() return model