Spaces:
Sleeping
Sleeping
Update model.py
Browse files
model.py
CHANGED
@@ -3,10 +3,9 @@ import torch.nn as nn
|
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
|
5 |
class SimpleCNN(nn.Module):
|
6 |
-
def __init__(self, model_type='
|
7 |
super(SimpleCNN, self).__init__()
|
8 |
self.num_classes = num_classes
|
9 |
-
self.model_type = model_type
|
10 |
if model_type == 'f':
|
11 |
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
|
12 |
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
|
@@ -26,14 +25,11 @@ class SimpleCNN(nn.Module):
|
|
26 |
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
|
27 |
self.fc1 = nn.Linear(512 * 14 * 14, 1024)
|
28 |
self.dropout = nn.Dropout(0.3)
|
29 |
-
else:
|
30 |
-
raise ValueError(f"Unknown model type: {model_type}")
|
31 |
-
|
32 |
-
self.relu = nn.ReLU()
|
33 |
-
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
|
34 |
self.fc2 = nn.Linear(self.fc1.out_features, num_classes)
|
|
|
|
|
35 |
|
36 |
-
|
37 |
x = self.pool(self.relu(self.conv1(x)))
|
38 |
x = self.pool(self.relu(self.conv2(x)))
|
39 |
x = self.pool(self.relu(self.conv3(x)))
|
|
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
|
5 |
class SimpleCNN(nn.Module):
|
6 |
+
def __init__(self, model_type='c', num_classes=4):
|
7 |
super(SimpleCNN, self).__init__()
|
8 |
self.num_classes = num_classes
|
|
|
9 |
if model_type == 'f':
|
10 |
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
|
11 |
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
|
|
|
25 |
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
|
26 |
self.fc1 = nn.Linear(512 * 14 * 14, 1024)
|
27 |
self.dropout = nn.Dropout(0.3)
|
|
|
|
|
|
|
|
|
|
|
28 |
self.fc2 = nn.Linear(self.fc1.out_features, num_classes)
|
29 |
+
self.relu = nn.ReLU()
|
30 |
+
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
31 |
|
32 |
+
def forward(self, x):
|
33 |
x = self.pool(self.relu(self.conv1(x)))
|
34 |
x = self.pool(self.relu(self.conv2(x)))
|
35 |
x = self.pool(self.relu(self.conv3(x)))
|