eyupipler commited on
Commit
5867d03
·
verified ·
1 Parent(s): 539c115

Create model.py

Browse files
Files changed (1) hide show
  1. model.py +62 -0
model.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from huggingface_hub import hf_hub_download
4
+
5
+ class SimpleCNN(nn.Module):
6
+ def __init__(self, model_type='f', num_classes=4):
7
+ super(SimpleCNN, self).__init__()
8
+ self.num_classes = num_classes
9
+ self.model_type = model_type
10
+ if model_type == 'f':
11
+ self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
12
+ self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
13
+ self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
14
+ self.fc1 = nn.Linear(64 * 28 * 28, 256)
15
+ self.dropout = nn.Dropout(0.5)
16
+ elif model_type == 'c':
17
+ self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
18
+ self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
19
+ self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
20
+ self.fc1 = nn.Linear(128 * 28 * 28, 512)
21
+ self.dropout = nn.Dropout(0.5)
22
+ elif model_type == 'q':
23
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
24
+ self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
25
+ self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
26
+ self.conv4 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
27
+ self.fc1 = nn.Linear(512 * 14 * 14, 1024)
28
+ self.dropout = nn.Dropout(0.3)
29
+ else:
30
+ raise ValueError(f"Unknown model type: {model_type}")
31
+
32
+ self.relu = nn.ReLU()
33
+ self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
34
+ self.fc2 = nn.Linear(self.fc1.out_features, num_classes)
35
+
36
+ def forward(self, x):
37
+ x = self.pool(self.relu(self.conv1(x)))
38
+ x = self.pool(self.relu(self.conv2(x)))
39
+ x = self.pool(self.relu(self.conv3(x)))
40
+ if self.model_type == 'q':
41
+ x = self.pool(self.relu(self.conv4(x)))
42
+ x = x.view(x.size(0), -1)
43
+ x = self.relu(self.fc1(x))
44
+ x = self.dropout(x)
45
+ x = self.fc2(x)
46
+ return x
47
+
48
+
49
+ def load_model(version='c', device='cpu'):
50
+ model_type = version.lower()
51
+ filename = f"Vbai-TS 1.0{model_type}.pt"
52
+
53
+ weights_path = hf_hub_download(
54
+ repo_id="Neurazum/Vbai-TS-1.0",
55
+ filename=filename,
56
+ repo_type="model"
57
+ )
58
+
59
+ model = SimpleCNN(model_type=model_type, num_classes=4).to(device)
60
+ state_dict = torch.load(weights_path, map_location=device)
61
+ model.load_state_dict(state_dict, strict=False)
62
+ model.eval()