Spaces:
Sleeping
Sleeping
Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
+
|
5 |
+
class SimpleCNN(nn.Module):
|
6 |
+
def __init__(self, model_type='f', num_classes=4):
|
7 |
+
super(SimpleCNN, self).__init__()
|
8 |
+
self.num_classes = num_classes
|
9 |
+
self.model_type = model_type
|
10 |
+
if model_type == 'f':
|
11 |
+
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
|
12 |
+
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
|
13 |
+
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
|
14 |
+
self.fc1 = nn.Linear(64 * 28 * 28, 256)
|
15 |
+
self.dropout = nn.Dropout(0.5)
|
16 |
+
elif model_type == 'c':
|
17 |
+
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
|
18 |
+
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
|
19 |
+
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
|
20 |
+
self.fc1 = nn.Linear(128 * 28 * 28, 512)
|
21 |
+
self.dropout = nn.Dropout(0.5)
|
22 |
+
elif model_type == 'q':
|
23 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
|
24 |
+
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
|
25 |
+
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
|
26 |
+
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
|
27 |
+
self.fc1 = nn.Linear(512 * 14 * 14, 1024)
|
28 |
+
self.dropout = nn.Dropout(0.3)
|
29 |
+
else:
|
30 |
+
raise ValueError(f"Unknown model type: {model_type}")
|
31 |
+
|
32 |
+
self.relu = nn.ReLU()
|
33 |
+
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
|
34 |
+
self.fc2 = nn.Linear(self.fc1.out_features, num_classes)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
x = self.pool(self.relu(self.conv1(x)))
|
38 |
+
x = self.pool(self.relu(self.conv2(x)))
|
39 |
+
x = self.pool(self.relu(self.conv3(x)))
|
40 |
+
if self.model_type == 'q':
|
41 |
+
x = self.pool(self.relu(self.conv4(x)))
|
42 |
+
x = x.view(x.size(0), -1)
|
43 |
+
x = self.relu(self.fc1(x))
|
44 |
+
x = self.dropout(x)
|
45 |
+
x = self.fc2(x)
|
46 |
+
return x
|
47 |
+
|
48 |
+
|
49 |
+
def load_model(version='c', device='cpu'):
|
50 |
+
model_type = version.lower()
|
51 |
+
filename = f"Vbai-TS 1.0{model_type}.pt"
|
52 |
+
|
53 |
+
weights_path = hf_hub_download(
|
54 |
+
repo_id="Neurazum/Vbai-TS-1.0",
|
55 |
+
filename=filename,
|
56 |
+
repo_type="model"
|
57 |
+
)
|
58 |
+
|
59 |
+
model = SimpleCNN(model_type=model_type, num_classes=4).to(device)
|
60 |
+
state_dict = torch.load(weights_path, map_location=device)
|
61 |
+
model.load_state_dict(state_dict, strict=False)
|
62 |
+
model.eval()
|