import torch import torch.nn as nn from huggingface_hub import hf_hub_download class SimpleCNN(nn.Module): def __init__(self, model_type='c', num_classes=4): super(SimpleCNN, self).__init__() self.num_classes = num_classes if model_type == 'f': self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.fc1 = nn.Linear(64 * 28 * 28, 256) self.dropout = nn.Dropout(0.5) elif model_type == 'c': self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1) self.fc1 = nn.Linear(128 * 28 * 28, 512) self.dropout = nn.Dropout(0.5) elif model_type == 'q': self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1) self.conv4 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1) self.fc1 = nn.Linear(512 * 14 * 14, 1024) self.dropout = nn.Dropout(0.3) self.fc2 = nn.Linear(self.fc1.out_features, num_classes) self.relu = nn.ReLU() self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) def forward(self, x): x = self.pool(self.relu(self.conv1(x))) x = self.pool(self.relu(self.conv2(x))) x = self.pool(self.relu(self.conv3(x))) if hasattr(self, 'conv4'): x = self.pool(self.relu(self.conv4(x))) x = x.view(x.size(0), -1) x = self.relu(self.fc1(x)) x = self.dropout(x) x = self.fc2(x) return x def load_model(version='c', device='cpu'): model_type = version.lower() filename = f"Vbai-TS 1.0{model_type}.pt" weights_path = hf_hub_download( repo_id="Neurazum/Vbai-TS-1.0", filename=filename, repo_type="model" ) model = SimpleCNN(model_type=model_type, num_classes=6).to(device) state_dict = torch.load(weights_path, map_location=device) model.load_state_dict(state_dict, strict=False) model.eval() return model