Spaces:
Sleeping
Sleeping
Upload App.py
Browse files
App.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
+
# from sklearn.decomposition import PCA
|
5 |
+
from langchain_community.llms import Ollama
|
6 |
+
from langchain_chroma import Chroma
|
7 |
+
import langchain
|
8 |
+
from langchain_community.document_loaders import DirectoryLoader, TextLoader, PyPDFLoader
|
9 |
+
|
10 |
+
from langchain_experimental.text_splitter import SemanticChunker
|
11 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
12 |
+
from langchain_community.embeddings.ollama import OllamaEmbeddings
|
13 |
+
|
14 |
+
from typing import List, Dict
|
15 |
+
from langchain.docstore.document import Document
|
16 |
+
|
17 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
18 |
+
|
19 |
+
tokenizer = T5Tokenizer.from_pretrained("Voicelab/vlt5-base-keywords")
|
20 |
+
model = T5ForConditionalGeneration.from_pretrained("Voicelab/vlt5-base-keywords")
|
21 |
+
|
22 |
+
vectorstore = Chroma(
|
23 |
+
# docs,
|
24 |
+
embedding_function=OllamaEmbeddings(model = "gemma:2b"),
|
25 |
+
persist_directory="chroma_db"
|
26 |
+
)
|
27 |
+
|
28 |
+
print(vectorstore.similarity_search_with_score("Course Leader"))
|
29 |
+
|
30 |
+
llm = Ollama(
|
31 |
+
model="llama3.2:3b"
|
32 |
+
)
|
33 |
+
|
34 |
+
def retrieve_relevant_chunks(
|
35 |
+
vector_store: Chroma,
|
36 |
+
query: str,
|
37 |
+
n_docs: int = 2,
|
38 |
+
chunks_per_doc: int = 5
|
39 |
+
) -> Dict[str, List[Document]]:
|
40 |
+
|
41 |
+
# Get more results initially to ensure we have enough unique documents
|
42 |
+
results = vector_store.similarity_search_with_score(
|
43 |
+
query,
|
44 |
+
k=50 # Fetch more to ensure we have enough unique documents
|
45 |
+
)
|
46 |
+
|
47 |
+
# Group results by document ID
|
48 |
+
doc_chunks: Dict[str, List[tuple]] = {}
|
49 |
+
for doc, score in results:
|
50 |
+
doc_id = doc.metadata.get('source', '') # or use appropriate metadata field
|
51 |
+
if doc_id:
|
52 |
+
if doc_id not in doc_chunks:
|
53 |
+
doc_chunks[doc_id] = []
|
54 |
+
doc_chunks[doc_id].append((doc, score))
|
55 |
+
|
56 |
+
# Sort documents by their best matching chunk's score
|
57 |
+
sorted_docs = sorted(
|
58 |
+
doc_chunks.items(),
|
59 |
+
key=lambda x: min(chunk[1] for chunk in x[1])
|
60 |
+
)
|
61 |
+
|
62 |
+
# Take only the top n_docs documents
|
63 |
+
top_docs = sorted_docs[:n_docs]
|
64 |
+
|
65 |
+
# For each top document, get the best chunks_per_doc chunks
|
66 |
+
final_results: Dict[str, List[Document]] = {}
|
67 |
+
for doc_id, chunks in top_docs:
|
68 |
+
# Sort chunks by score (relevance)
|
69 |
+
sorted_chunks = sorted(chunks, key=lambda x: x[1])
|
70 |
+
# Take only the specified number of chunks and store just the Document objects
|
71 |
+
final_results[doc_id] = [chunk[0] for chunk in sorted_chunks[:chunks_per_doc]]
|
72 |
+
|
73 |
+
return final_results
|
74 |
+
|
75 |
+
def display_results(results: Dict[str, List[str]]) -> None:
|
76 |
+
"""
|
77 |
+
Display the retrieved chunks in a formatted way.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
results: Dictionary mapping document IDs to lists of text chunks
|
81 |
+
"""
|
82 |
+
prompt = " "
|
83 |
+
for doc_id, chunks in results.items():
|
84 |
+
# prompt += f"\nDocument ID: {doc_id}\n"
|
85 |
+
prompt += "-" * 50
|
86 |
+
for i, chunk in enumerate(chunks, 1):
|
87 |
+
# prompt += f"\nChunk {i}:"
|
88 |
+
prompt += str(chunk) + "\n"
|
89 |
+
# prompt += "-" * 30
|
90 |
+
return prompt
|
91 |
+
|
92 |
+
def main(query):
|
93 |
+
|
94 |
+
# Initialize your vector store (example)
|
95 |
+
# vector_store = Chroma(
|
96 |
+
# persist_directory="path/to/your/vectorstore",
|
97 |
+
# embedding_function=your_embedding_function
|
98 |
+
# )
|
99 |
+
|
100 |
+
upd_query = "Keyword: " + query
|
101 |
+
input_ids = tokenizer.encode(upd_query, return_tensors="pt")
|
102 |
+
outputs = model.generate(input_ids)
|
103 |
+
output_sequence = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
104 |
+
# print(output_sequence)
|
105 |
+
result_list = list(set(item.strip() for item in output_sequence.split(',')))
|
106 |
+
# print(result_list)
|
107 |
+
output_string = ", ".join(result_list)
|
108 |
+
print(output_string)
|
109 |
+
|
110 |
+
try:
|
111 |
+
results = retrieve_relevant_chunks(
|
112 |
+
vector_store=vectorstore,
|
113 |
+
query=output_string,
|
114 |
+
n_docs=2,
|
115 |
+
chunks_per_doc=5
|
116 |
+
)
|
117 |
+
|
118 |
+
prompt = display_results(results)
|
119 |
+
|
120 |
+
except Exception as e:
|
121 |
+
print(f"Error: {str(e)}")
|
122 |
+
|
123 |
+
formatted_prompt = f"""
|
124 |
+
You are an AI assistant. Your goal is to answer questions regarding student handbooks based on the following context provided. Make sure all the answers are within the given context:
|
125 |
+
{prompt}
|
126 |
+
|
127 |
+
Based on the above, answer the following question:
|
128 |
+
{query}
|
129 |
+
Give the answer in a clear and concise manner
|
130 |
+
"""
|
131 |
+
|
132 |
+
response = llm.predict(formatted_prompt)
|
133 |
+
|
134 |
+
return response
|
135 |
+
|
136 |
+
with gr.Blocks() as demo:
|
137 |
+
#gr.Image("../Documentation/Context Diagram.png", scale=2)
|
138 |
+
#gr(title="Your Interface Title")
|
139 |
+
gr.Markdown("""
|
140 |
+
<center>
|
141 |
+
<span style='font-size: 50px; font-weight: Bold; font-family: "Graduate", serif'>
|
142 |
+
IIT RAG Student Handbooks
|
143 |
+
</span>
|
144 |
+
</center>
|
145 |
+
""")
|
146 |
+
with gr.Group():
|
147 |
+
query = gr.Textbox(label="Question")
|
148 |
+
answer = gr.Textbox(label="Answer")
|
149 |
+
|
150 |
+
with gr.Row():
|
151 |
+
login_btn = gr.Button(value="Generate")
|
152 |
+
|
153 |
+
login_btn.click(main, inputs=[query], outputs=answer)
|
154 |
+
|
155 |
+
# demo.launch(share = True, auth=authenticate)
|
156 |
+
demo.launch(share = True)
|
157 |
+
|