File size: 5,313 Bytes
2991a67
9c31040
2991a67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c31040
2991a67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import numpy as np
import streamlit as st
from openai import OpenAI
import os
import json
from dotenv import load_dotenv

load_dotenv()

# Initialize the client
client = OpenAI(
    base_url=os.environ.get('BASE_URL'),  # Fetch base_url from environment variables
    api_key=os.environ.get('API_KEY')      # Fetch API key from environment variables
)

# Create supported models
model_links = {
    "Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1",
}

# Random dog images for error message
random_dog = [
    "0f476473-2d8b-415e-b944-483768418a95.jpg",
    "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
    "526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
    "1326984c-39b0-492c-a773-f120d747a7e2.jpg",
    "42a98d03-5ed7-4b3b-af89-7c4876cb14c3.jpg",
    "8b3317ed-2083-42ac-a575-7ae45f9fdc0d.jpg",
    "ee17f54a-83ac-44a3-8a35-e89ff7153fb4.jpg",
    "027eef85-ccc1-4a66-8967-5d74f34c8bb4.jpg",
    "08f5398d-7f89-47da-a5cd-1ed74967dc1f.jpg",
    "0fd781ff-ec46-4bdc-a4e8-24f18bf07def.jpg",
    "0fb4aeee-f949-4c7b-a6d8-05bf0736bdd1.jpg",
    "6edac66e-c0de-4e69-a9d6-b2e6f6f9001b.jpg",
    "bfb9e165-c643-4993-9b3a-7e73571672a6.jpg"
]

history_file = 'chat_histories.json'

def load_history():
    if os.path.exists(history_file):
        with open(history_file, 'r') as f:
            return json.load(f)
    return {}

def save_history(histories):
    with open(history_file, 'w') as f:
        json.dump(histories, f)

def reset_conversation():
    '''
    Resets Conversation
    '''
    st.session_state.messages = []
    st.session_state.current_chat_name = None
    return None

# Set up the Streamlit page configuration
st.set_page_config(page_icon="πŸ“ƒ", layout="wide", page_title="GPT-CHATBOT.ru")

# Display the header
st.title("GPT-CHATBOT.ru")

# Initialize session state attributes
if "messages" not in st.session_state:
    st.session_state.messages = []

if "chat_histories" not in st.session_state:
    st.session_state.chat_histories = load_history()

if "current_chat_name" not in st.session_state:
    st.session_state.current_chat_name = None

# Define the available models
models = [key for key in model_links.keys()]

# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Select Model", models)

# Create a temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)

# Add reset button to clear conversation
st.sidebar.button('Reset Chat', on_click=reset_conversation)

# Create a chat history dropdown
chat_history = st.sidebar.selectbox("Select Chat History", ["Current Chat"] + list(st.session_state.chat_histories.keys()))

if chat_history != "Current Chat":
    st.session_state.messages = st.session_state.chat_histories[chat_history]
else:
    if selected_model not in st.session_state:
        st.session_state[selected_model] = model_links[selected_model]

# Create a system prompt input
system_prompt = st.sidebar.text_input("System Prompt", value="", help="Optional system prompt for the chat model.")

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    avatar = "πŸ”‹" if message["role"] == "assistant" else "πŸ§‘β€πŸ’»"
    with st.chat_message(message["role"], avatar=avatar):
        st.markdown(message["content"])

# Accept user input
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
    with st.chat_message("user", avatar="πŸ§‘β€πŸ’»"):
        st.markdown(prompt)
    st.session_state.messages.append({"role": "user", "content": prompt})

    try:
        # Construct the list of messages with an optional system prompt
        messages = [{"role": m["role"], "content": m["content"]} for m in st.session_state.messages]
        if system_prompt:
            messages.insert(0, {"role": "system", "content": system_prompt})
        
        # Make the API request
        stream = client.chat.completions.create(
            model=model_links[selected_model],
            messages=messages,
            temperature=temp_values,
            stream=True,
            max_tokens=3000,
        )
        response = st.write_stream(stream)

    except Exception as e:
        response = "πŸ˜΅β€πŸ’« Looks like someone unplugged something!\
                \n Either the model space is being updated or something is down.\
                \n\
                \n Try again later. \
                \n\
                \n Here's a random pic of a 🐢:"
        st.write(response)
        random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
        st.image(random_dog_pick)
        st.write("This was the error message:")
        st.write(e)

    st.session_state.messages.append({"role": "assistant", "content": response})

    # Automatically name and save chat history
    if not st.session_state.current_chat_name:
        st.session_state.current_chat_name = f"Chat_{len(st.session_state.chat_histories) + 1}"
        st.session_state.chat_histories[st.session_state.current_chat_name] = st.session_state.messages
        save_history(st.session_state.chat_histories)

st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
st.sidebar.markdown("\n[TypeGPT](https://typegpt.net).")