Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,71 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
-
import torch
|
4 |
-
from transformers import AutoProcessor, MusicgenForConditionalGeneration
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
"
|
17 |
-
"
|
18 |
-
"
|
19 |
-
"
|
20 |
-
"
|
21 |
-
"
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
# Gradio
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import torch
|
4 |
+
from transformers import AutoProcessor, MusicgenForConditionalGeneration
|
5 |
+
import numpy as np # Import numpy
|
6 |
+
|
7 |
+
# Load emotion classifier
|
8 |
+
emotion_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
|
9 |
+
|
10 |
+
# Load music generator (small for CPU)
|
11 |
+
music_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
12 |
+
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
13 |
+
|
14 |
+
# Map emotion to style/genre prompts
|
15 |
+
EMOTION_TO_MUSIC = {
|
16 |
+
"joy": "happy upbeat piano melody",
|
17 |
+
"anger": "intense aggressive drums",
|
18 |
+
"sadness": "slow emotional violin",
|
19 |
+
"fear": "dark ambient synth",
|
20 |
+
"love": "soft romantic acoustic guitar",
|
21 |
+
"surprise": "quirky playful tune",
|
22 |
+
"neutral": "chill background lofi beat"
|
23 |
+
}
|
24 |
+
|
25 |
+
# Main generation function
|
26 |
+
def generate_music(user_input):
|
27 |
+
# Step 1: Detect emotion
|
28 |
+
emotion_scores = emotion_classifier(user_input)[0]
|
29 |
+
top_emotion = max(emotion_scores, key=lambda x: x["score"])["label"]
|
30 |
+
|
31 |
+
# Step 2: Generate prompt
|
32 |
+
music_prompt = EMOTION_TO_MUSIC.get(top_emotion.lower(), "ambient melody")
|
33 |
+
|
34 |
+
# Step 3: Generate music
|
35 |
+
inputs = processor(text=[music_prompt], return_tensors="pt")
|
36 |
+
audio_values = music_model.generate(**inputs, max_new_tokens=1024)
|
37 |
+
|
38 |
+
# Convert audio tensor to numpy array
|
39 |
+
audio_array = audio_values[0].cpu().numpy()
|
40 |
+
|
41 |
+
# --- FIX START ---
|
42 |
+
# Normalize the audio array to be within the range of a 16-bit PCM WAV file
|
43 |
+
# The default sampling rate for musicgen-small is 16000 Hz, and Gradio expects
|
44 |
+
# values to be scaled for 16-bit integers if not float.
|
45 |
+
# We'll normalize to -1 to 1 for float and let Gradio handle the 16-bit conversion.
|
46 |
+
# However, to be extra safe, ensure max amplitude is 1.0.
|
47 |
+
audio_array = audio_array / np.max(np.abs(audio_array))
|
48 |
+
# --- FIX END ---
|
49 |
+
|
50 |
+
|
51 |
+
# Return result
|
52 |
+
# The Musicgen model outputs audio at a sampling rate of 16kHz
|
53 |
+
sampling_rate = 16000
|
54 |
+
return f"Top Emotion: {top_emotion}", (sampling_rate, audio_array)
|
55 |
+
|
56 |
+
# Gradio UI
|
57 |
+
with gr.Blocks() as demo:
|
58 |
+
gr.Markdown("# Emotion-to-Music AI")
|
59 |
+
gr.Markdown("Describe how you feel and get a unique music track matching your mood!")
|
60 |
+
|
61 |
+
with gr.Row():
|
62 |
+
text_input = gr.Textbox(label="How are you feeling?")
|
63 |
+
generate_btn = gr.Button("Generate Music")
|
64 |
+
|
65 |
+
with gr.Row():
|
66 |
+
emotion_output = gr.Textbox(label="Detected Emotion")
|
67 |
+
audio_output = gr.Audio(label="Generated Music", type="numpy") # type="numpy" is correct here
|
68 |
+
|
69 |
+
generate_btn.click(fn=generate_music, inputs=text_input, outputs=[emotion_output, audio_output])
|
70 |
+
|
71 |
+
demo.launch()
|