Spaces:
Sleeping
Sleeping
File size: 10,475 Bytes
8a5a458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
# app.py - Main Gradio application
import gradio as gr
import whisper
import torch
from transformers import MarianMTModel, MarianTokenizer
import yt_dlp
import os
import tempfile
import subprocess
from pathlib import Path
import re
class SubtitleTranslator:
def __init__(self):
# Use the smallest Whisper model for speed
self.whisper_model = whisper.load_model("tiny")
# Translation model cache
self.translation_models = {}
self.tokenizers = {}
def download_youtube_audio(self, url):
"""Download audio from YouTube video"""
try:
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': 'temp_audio.%(ext)s',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
# Find the downloaded file
for file in os.listdir('.'):
if file.startswith('temp_audio') and file.endswith('.mp3'):
return file
return None
except Exception as e:
return None
def extract_audio_from_video(self, video_path):
"""Extract audio from uploaded video file"""
try:
audio_path = "temp_extracted_audio.wav"
cmd = [
'ffmpeg', '-i', video_path,
'-acodec', 'pcm_s16le',
'-ac', '1',
'-ar', '16000',
audio_path, '-y'
]
subprocess.run(cmd, check=True, capture_output=True)
return audio_path
except Exception as e:
return None
def transcribe_audio(self, audio_path):
"""Transcribe audio using Whisper"""
result = self.whisper_model.transcribe(audio_path)
return result
def get_translation_model(self, source_lang, target_lang="en"):
"""Load translation model for language pair"""
model_name = f"Helsinki-NLP/opus-mt-{source_lang}-{target_lang}"
try:
if model_name not in self.translation_models:
self.tokenizers[model_name] = MarianTokenizer.from_pretrained(model_name)
self.translation_models[model_name] = MarianMTModel.from_pretrained(model_name)
return self.translation_models[model_name], self.tokenizers[model_name]
except:
# Fallback to multilingual model
fallback_model = "Helsinki-NLP/opus-mt-mul-en"
if fallback_model not in self.translation_models:
self.tokenizers[fallback_model] = MarianTokenizer.from_pretrained(fallback_model)
self.translation_models[fallback_model] = MarianMTModel.from_pretrained(fallback_model)
return self.translation_models[fallback_model], self.tokenizers[fallback_model]
def translate_text(self, text, source_lang, target_lang="en"):
"""Translate text using MarianMT"""
if source_lang == target_lang:
return text
try:
model, tokenizer = self.get_translation_model(source_lang, target_lang)
inputs = tokenizer.encode(text, return_tensors="pt", truncation=True, max_length=512)
translated = model.generate(inputs, max_length=512, num_beams=4, early_stopping=True)
return tokenizer.decode(translated[0], skip_special_tokens=True)
except:
return text # Return original if translation fails
def format_timestamp(self, seconds):
"""Convert seconds to SRT timestamp format"""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
secs = int(seconds % 60)
millisecs = int((seconds % 1) * 1000)
return f"{hours:02d}:{minutes:02d}:{secs:02d},{millisecs:03d}"
def create_srt(self, segments, source_lang):
"""Create SRT subtitle content"""
srt_content = ""
for i, segment in enumerate(segments, 1):
start_time = self.format_timestamp(segment['start'])
end_time = self.format_timestamp(segment['end'])
original_text = segment['text'].strip()
translated_text = self.translate_text(original_text, source_lang, "en")
srt_content += f"{i}\n"
srt_content += f"{start_time} --> {end_time}\n"
srt_content += f"{translated_text}\n\n"
return srt_content
def process_video(self, video_input, youtube_url):
"""Main processing function"""
try:
# Determine input source
if youtube_url and youtube_url.strip():
audio_path = self.download_youtube_audio(youtube_url.strip())
if not audio_path:
return "Error: Could not download YouTube video", None
elif video_input:
audio_path = self.extract_audio_from_video(video_input)
if not audio_path:
return "Error: Could not extract audio from video", None
else:
return "Please provide either a video file or YouTube URL", None
# Transcribe audio
result = self.transcribe_audio(audio_path)
# Detect language
detected_lang = result.get('language', 'unknown')
# Language code mapping for translation models
lang_mapping = {
'spanish': 'es', 'french': 'fr', 'german': 'de', 'italian': 'it',
'portuguese': 'pt', 'russian': 'ru', 'chinese': 'zh', 'japanese': 'ja',
'korean': 'ko', 'arabic': 'ar', 'hindi': 'hi', 'dutch': 'nl',
'swedish': 'sv', 'norwegian': 'no', 'danish': 'da', 'finnish': 'fi'
}
source_lang_code = lang_mapping.get(detected_lang, detected_lang)
# Create SRT content
srt_content = self.create_srt(result['segments'], source_lang_code)
# Save SRT file
srt_filename = "translated_subtitles.srt"
with open(srt_filename, 'w', encoding='utf-8') as f:
f.write(srt_content)
# Clean up temporary files
if os.path.exists(audio_path):
os.remove(audio_path)
status_msg = f"β
Processing complete!\n"
status_msg += f"π Detected language: {detected_lang}\n"
status_msg += f"π Generated {len(result['segments'])} subtitle segments\n"
status_msg += f"π Translated to English"
return status_msg, srt_filename
except Exception as e:
return f"Error during processing: {str(e)}", None
# Initialize the translator
translator = SubtitleTranslator()
# Create Gradio interface
def process_video_interface(video_file, youtube_url, progress=gr.Progress()):
progress(0.1, desc="Starting processing...")
progress(0.3, desc="Extracting audio...")
result = translator.process_video(video_file, youtube_url)
progress(0.7, desc="Transcribing and translating...")
progress(1.0, desc="Complete!")
return result
# Custom CSS for better UI
css = """
.gradio-container {
max-width: 900px !important;
}
.title {
text-align: center;
color: #2563eb;
font-size: 2.5rem;
font-weight: bold;
margin-bottom: 1rem;
}
.subtitle {
text-align: center;
color: #64748b;
font-size: 1.2rem;
margin-bottom: 2rem;
}
.feature-box {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 1rem;
border-radius: 10px;
margin: 1rem 0;
}
"""
# Create the Gradio app
with gr.Blocks(css=css, title="Video Subtitle Translator") as app:
gr.HTML("""
<div class="title">π¬ Video Subtitle Translator</div>
<div class="subtitle">Generate English subtitles from any language video using AI</div>
""")
with gr.Row():
with gr.Column():
gr.HTML("""
<div class="feature-box">
<h3>π Features:</h3>
<ul>
<li>πΉ Upload video files or paste YouTube links</li>
<li>π― Automatic speech recognition with Whisper AI</li>
<li>π Auto-detect source language</li>
<li>π Generate accurate English subtitles</li>
<li>β±οΈ Perfect timing synchronization</li>
<li>πΎ Download ready-to-use SRT files</li>
</ul>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
video_input = gr.File(
label="π Upload Video File",
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm", ".m4v"],
type="filepath"
)
youtube_input = gr.Textbox(
label="π Or paste YouTube URL",
placeholder="https://www.youtube.com/watch?v=...",
lines=1
)
process_btn = gr.Button(
"π Generate Subtitles",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
status_output = gr.Textbox(
label="π Processing Status",
lines=6,
interactive=False
)
srt_output = gr.File(
label="πΎ Download SRT File",
interactive=False
)
gr.HTML("""
<div style="text-align: center; margin-top: 2rem; color: #64748b;">
<p>β‘ Powered by Whisper AI & MarianMT | π€ Running on Hugging Face Spaces</p>
<p>π‘ Tip: For best results, use videos with clear audio and minimal background noise</p>
</div>
""")
# Connect the processing function
process_btn.click(
fn=process_video_interface,
inputs=[video_input, youtube_input],
outputs=[status_output, srt_output],
show_progress=True
)
if __name__ == "__main__":
app.launch() |