Spaces:
Sleeping
Sleeping
File size: 16,209 Bytes
2424bf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
from transformers import pipeline
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import io
import base64
import json
import re
import time
import os
from typing import List, Dict, Tuple, Optional
import warnings
warnings.filterwarnings("ignore")
# Global variables for models
sd_pipe = None
tts_pipe = None
def initialize_models():
"""Initialize AI models on first use"""
global sd_pipe, tts_pipe
if sd_pipe is None:
print("Loading Stable Diffusion model...")
sd_pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float32, # Use float32 for CPU
safety_checker=None,
requires_safety_checker=False
)
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe = sd_pipe.to("cpu")
sd_pipe.enable_attention_slicing()
if tts_pipe is None:
try:
print("Loading TTS model...")
tts_pipe = pipeline("text-to-speech", model="microsoft/speecht5_tts", device=-1)
except:
print("TTS model not available, continuing without audio...")
tts_pipe = None
class StorySegmenter:
"""Handles story segmentation and prompt enhancement"""
@staticmethod
def split_story(story: str, max_segments: int = 15) -> List[str]:
"""Split story into segments suitable for 10-second videos"""
# Split by sentences first
sentences = re.split(r'[.!?]+', story)
sentences = [s.strip() for s in sentences if s.strip()]
segments = []
current_segment = ""
for sentence in sentences:
# If adding this sentence would make segment too long, start new segment
if len(current_segment + " " + sentence) > 200 or len(segments) >= max_segments:
if current_segment:
segments.append(current_segment.strip())
current_segment = sentence
else:
segments.append(sentence)
else:
current_segment += (" " + sentence if current_segment else sentence)
# Add final segment
if current_segment:
segments.append(current_segment.strip())
return segments[:max_segments]
@staticmethod
def enhance_prompt(segment: str, character_name: str, character_traits: str,
style: str, scene_context: str = "") -> str:
"""Enhance segment prompt with character and style information"""
enhanced = f"{segment}. "
enhanced += f"Character: {character_name} ({character_traits}). "
enhanced += f"Style: {style}, high quality, detailed. "
if scene_context:
enhanced += f"Scene context: {scene_context}. "
# Add negative prompts
enhanced += "NEGATIVE: blurry, low quality, distorted, bad anatomy"
return enhanced
class ConsistencyManager:
"""Manages visual consistency across segments"""
def __init__(self, base_seed: int = 42):
self.base_seed = base_seed
self.character_prompt = ""
self.scene_context = ""
self.last_scene_elements = []
def get_segment_seed(self, segment_index: int) -> int:
"""Get consistent seed for segment"""
return self.base_seed + segment_index
def update_context(self, segment: str):
"""Update scene context based on current segment"""
# Simple context extraction - in production would use NLP
if any(word in segment.lower() for word in ['house', 'home', 'room', 'kitchen']):
self.scene_context = "indoor domestic setting"
elif any(word in segment.lower() for word in ['forest', 'tree', 'nature', 'outdoor']):
self.scene_context = "outdoor natural setting"
elif any(word in segment.lower() for word in ['city', 'street', 'building']):
self.scene_context = "urban setting"
class VideoGenerator:
"""Handles video/image generation for each segment"""
def __init__(self):
self.consistency_manager = ConsistencyManager()
def generate_segment_image(self, enhanced_prompt: str, seed: int,
width: int = 512, height: int = 512) -> Image.Image:
"""Generate image for a story segment"""
initialize_models()
if sd_pipe is None:
# Fallback: create a placeholder image
return self.create_placeholder_image(enhanced_prompt, width, height)
try:
generator = torch.Generator().manual_seed(seed)
# Generate image
with torch.no_grad():
result = sd_pipe(
prompt=enhanced_prompt,
negative_prompt="blurry, low quality, distorted, bad anatomy, ugly",
num_inference_steps=20, # Reduced for faster generation
guidance_scale=7.5,
width=width,
height=height,
generator=generator
)
return result.images[0]
except Exception as e:
print(f"Error generating image: {e}")
return self.create_placeholder_image(enhanced_prompt, width, height)
def create_placeholder_image(self, prompt: str, width: int, height: int) -> Image.Image:
"""Create a placeholder image when generation fails"""
img = Image.new('RGB', (width, height), color='lightblue')
draw = ImageDraw.Draw(img)
# Try to load a font, fallback to default if not available
try:
font = ImageFont.truetype("arial.ttf", 20)
except:
font = ImageFont.load_default()
# Wrap text
words = prompt[:100].split()
lines = []
current_line = ""
for word in words:
if len(current_line + word) < 40:
current_line += word + " "
else:
lines.append(current_line)
current_line = word + " "
if current_line:
lines.append(current_line)
# Draw text
y_offset = height // 2 - (len(lines) * 25) // 2
for line in lines:
bbox = draw.textbbox((0, 0), line, font=font)
text_width = bbox[2] - bbox[0]
x_offset = (width - text_width) // 2
draw.text((x_offset, y_offset), line, fill='black', font=font)
y_offset += 25
return img
class AudioGenerator:
"""Handles audio generation for segments"""
@staticmethod
def generate_segment_audio(text: str, speaker_id: int = 0) -> Optional[bytes]:
"""Generate audio for a text segment"""
initialize_models()
if tts_pipe is None:
return None
try:
# Generate audio
audio_data = tts_pipe(text)
# Convert to bytes (simplified - in production would handle proper audio format)
if 'audio' in audio_data:
# Convert audio array to bytes representation
audio_array = np.array(audio_data['audio'])
return audio_array.tobytes()
except Exception as e:
print(f"Error generating audio: {e}")
return None
def process_story(story_text: str, character_name: str, character_traits: str,
style: str, enable_voiceover: bool, reference_image: Optional[Image.Image] = None,
progress=gr.Progress()) -> Tuple[List[Image.Image], List[str], str]:
"""Main processing function"""
if not story_text.strip():
return [], [], "Please enter a story to generate."
if not character_name.strip():
character_name = "Main Character"
if not character_traits.strip():
character_traits = "detailed character design"
# Initialize components
segmenter = StorySegmenter()
video_gen = VideoGenerator()
audio_gen = AudioGenerator()
# Step 1: Split story into segments
progress(0.1, "Splitting story into segments...")
segments = segmenter.split_story(story_text)
if not segments:
return [], [], "Could not create segments from the story."
progress(0.2, f"Created {len(segments)} segments")
# Step 2: Generate content for each segment
generated_images = []
generated_audio_info = []
for i, segment in enumerate(segments):
progress((0.2 + 0.7 * (i / len(segments))), f"Generating segment {i+1}/{len(segments)}")
# Update consistency context
video_gen.consistency_manager.update_context(segment)
# Enhance prompt
enhanced_prompt = segmenter.enhance_prompt(
segment, character_name, character_traits, style,
video_gen.consistency_manager.scene_context
)
# Generate image
seed = video_gen.consistency_manager.get_segment_seed(i)
image = video_gen.generate_segment_image(enhanced_prompt, seed)
generated_images.append(image)
# Generate audio if enabled
if enable_voiceover:
audio_bytes = audio_gen.generate_segment_audio(segment)
audio_info = f"Audio generated for segment {i+1}" if audio_bytes else f"Audio generation failed for segment {i+1}"
else:
audio_info = f"No audio (voiceover disabled)"
generated_audio_info.append(audio_info)
# Small delay to prevent overwhelming the system
time.sleep(0.1)
progress(1.0, "Generation complete!")
# Create summary
summary = f"""
## Generation Summary
**Story Segments**: {len(segments)}
**Character**: {character_name} ({character_traits})
**Style**: {style}
**Voiceover**: {'Enabled' if enable_voiceover else 'Disabled'}
### Segments Generated:
"""
for i, segment in enumerate(segments):
summary += f"\n**Segment {i+1}**: {segment[:100]}{'...' if len(segment) > 100 else ''}"
return generated_images, generated_audio_info, summary
def create_interface():
"""Create the Gradio interface"""
with gr.Blocks(title="AI Video Story Generator", theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# π¬ AI Video Story Generator
Generate animated story segments with consistent characters and scenes.
Running on free CPU tier - generates 10-15 segments of ~10 seconds each.
""")
with gr.Row():
with gr.Column(scale=2):
story_input = gr.Textbox(
label="π Story Text",
placeholder="Enter your story here (up to 50,000 characters)...",
lines=10,
max_lines=20
)
with gr.Row():
character_name = gr.Textbox(
label="π€ Character Name",
placeholder="e.g., Alice, Hero, The Detective",
value="Main Character"
)
character_traits = gr.Textbox(
label="β¨ Character Traits",
placeholder="e.g., young woman, brown hair, blue dress",
value="detailed character design"
)
with gr.Row():
style = gr.Dropdown(
label="π¨ Visual Style",
choices=[
"anime style",
"realistic",
"cartoon style",
"fantasy art",
"sci-fi concept art",
"children's book illustration",
"comic book style"
],
value="anime style"
)
enable_voiceover = gr.Checkbox(
label="π Enable Voiceover",
value=False
)
reference_image = gr.Image(
label="πΌοΈ Reference Image (Optional)",
type="pil"
)
with gr.Column(scale=1):
generate_btn = gr.Button(
"π¬ Generate Story Video",
variant="primary",
size="lg"
)
gr.Markdown("""
### π Instructions:
1. Enter your story text
2. Define your main character
3. Choose visual style
4. Enable voiceover if desired
5. Click Generate!
### β‘ Free Tier Limits:
- Max 15 segments (~3 minutes)
- CPU processing (slower)
- Sequential generation
""")
# Results section
with gr.Row():
summary_output = gr.Markdown(label="π Generation Summary")
# Generated content gallery
with gr.Row():
generated_gallery = gr.Gallery(
label="πΌοΈ Generated Segments",
show_label=True,
elem_id="gallery",
columns=3,
rows=2,
height="auto"
)
with gr.Row():
audio_info = gr.Textbox(
label="π Audio Information",
lines=5,
interactive=False
)
# Download section
gr.Markdown("""
### π₯ Download Instructions:
1. Right-click on any image to save individual segments
2. Use external tools to combine segments into final video
3. Audio files (if generated) can be downloaded separately
### π§ Recommended Tools for Combining:
- **Free**: OpenShot, DaVinci Resolve, Blender
- **Online**: Kapwing, Canva Video Editor
- **Command Line**: FFmpeg
""")
# Event handlers
generate_btn.click(
fn=process_story,
inputs=[
story_input,
character_name,
character_traits,
style,
enable_voiceover,
reference_image
],
outputs=[
generated_gallery,
audio_info,
summary_output
],
show_progress=True
)
# Example stories
gr.Markdown("""
### π Example Stories to Try:
**Fantasy Adventure**: "A brave knight discovers a magical forest where the trees whisper ancient secrets. She meets a wise dragon who offers to teach her the old magic. Together they must stop an evil sorcerer from destroying the realm."
**Sci-Fi Mystery**: "On a space station orbiting Mars, Detective Chen investigates strange disappearances. The security cameras show nothing, but she notices the artificial gravity fluctuating. Her investigation leads to a discovery that changes everything."
**Children's Tale**: "Little Bear couldn't sleep because of the thunder. He decided to visit his friend Owl, who lived in the big oak tree. Owl taught him that storms bring rain for flowers, and showed him how lightning dances across the sky."
""")
return interface
# Create and launch the interface
if __name__ == "__main__":
interface = create_interface()
interface.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |