VideoSubtitles / app.py
Nick021402's picture
Update app.py
30bc0de verified
import gradio as gr
import whisper
import torch
from transformers import pipeline
import tempfile
import os
import subprocess
import logging
from typing import Optional, Tuple
import re
import warnings
warnings.filterwarnings("ignore")
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SubtitleTranslator:
def __init__(self):
# Use the smallest Whisper model for speed
self.whisper_model = None
self.translator = None
self.device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {self.device}")
def load_models(self):
"""Load models lazily to save memory"""
if self.whisper_model is None:
logger.info("Loading Whisper model...")
self.whisper_model = whisper.load_model("base", device=self.device)
if self.translator is None:
logger.info("Loading translation model...")
# Use a lightweight translation model
try:
self.translator = pipeline(
"translation",
model="Helsinki-NLP/opus-mt-mul-en",
device=0 if self.device == "cuda" else -1
)
except Exception as e:
logger.warning(f"Failed to load Helsinki model, using Facebook model: {e}")
self.translator = pipeline(
"translation",
model="facebook/m2m100_418M",
device=0 if self.device == "cuda" else -1
)
def extract_audio(self, video_path: str) -> str:
"""Extract audio from video file"""
audio_path = tempfile.mktemp(suffix=".wav")
try:
# Use ffmpeg to extract audio - works with any video format/size
cmd = [
"ffmpeg", "-i", video_path,
"-vn", "-acodec", "pcm_s16le",
"-ar", "16000", "-ac", "1",
audio_path, "-y"
]
subprocess.run(cmd, check=True, capture_output=True)
logger.info(f"Audio extracted to: {audio_path}")
return audio_path
except subprocess.CalledProcessError as e:
logger.error(f"Audio extraction failed: {e}")
raise Exception("Failed to extract audio from video")
def transcribe_audio(self, audio_path: str) -> dict:
"""Transcribe audio using Whisper"""
try:
logger.info("Starting transcription...")
result = self.whisper_model.transcribe(
audio_path,
task="transcribe",
fp16=self.device == "cuda"
)
logger.info("Transcription completed")
return result
except Exception as e:
logger.error(f"Transcription failed: {e}")
raise Exception("Failed to transcribe audio")
def translate_text(self, text: str, source_lang: str = None) -> str:
"""Translate text to English"""
if not text.strip():
return ""
try:
# If already in English, return as is
if source_lang == "en":
return text
# For Helsinki model, use direct translation
if "Helsinki" in str(type(self.translator.model)):
result = self.translator(text)
return result[0]['translation_text'] if result else text
# For M2M100 model, specify target language
else:
result = self.translator(text, forced_bos_token_id=self.translator.tokenizer.get_lang_id("en"))
return result[0]['translation_text'] if result else text
except Exception as e:
logger.error(f"Translation failed: {e}")
return text # Return original if translation fails
def format_time(self, seconds: float) -> str:
"""Format time for SRT subtitle format"""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
secs = seconds % 60
return f"{hours:02d}:{minutes:02d}:{secs:06.3f}".replace('.', ',')
def create_srt(self, segments: list, translated: bool = False) -> str:
"""Create SRT subtitle format"""
srt_content = ""
for i, segment in enumerate(segments, 1):
start_time = self.format_time(segment['start'])
end_time = self.format_time(segment['end'])
text = segment.get('translated_text', segment['text']) if translated else segment['text']
srt_content += f"{i}\n{start_time} --> {end_time}\n{text}\n\n"
return srt_content
def process_video(self, video_path: str, translate: bool = True) -> Tuple[str, str, str]:
"""Main processing function"""
try:
# Load models
self.load_models()
# Extract audio
audio_path = self.extract_audio(video_path)
try:
# Transcribe
result = self.transcribe_audio(audio_path)
detected_language = result.get('language', 'unknown')
# Process segments
segments = result['segments']
if translate and detected_language != 'en':
logger.info(f"Translating from {detected_language} to English...")
for segment in segments:
segment['translated_text'] = self.translate_text(
segment['text'], detected_language
)
# Create subtitle files
original_srt = self.create_srt(segments, translated=False)
translated_srt = self.create_srt(segments, translated=True) if translate else ""
# Save to temporary files
original_file = tempfile.mktemp(suffix=".srt")
with open(original_file, 'w', encoding='utf-8') as f:
f.write(original_srt)
translated_file = None
if translate and detected_language != 'en':
translated_file = tempfile.mktemp(suffix=".srt")
with open(translated_file, 'w', encoding='utf-8') as f:
f.write(translated_srt)
return original_file, translated_file, f"Detected language: {detected_language}"
finally:
# Clean up audio file
if os.path.exists(audio_path):
os.unlink(audio_path)
except Exception as e:
logger.error(f"Processing failed: {e}")
raise gr.Error(f"Processing failed: {str(e)}")
# Initialize the translator
translator = SubtitleTranslator()
def process_video_interface(video_file, translate_option):
"""Gradio interface function"""
if video_file is None:
raise gr.Error("Please upload a video file")
translate = translate_option == "Yes"
try:
original_srt, translated_srt, info = translator.process_video(video_file, translate)
outputs = [original_srt, info]
if translated_srt:
outputs.append(translated_srt)
return outputs[0], outputs[1], outputs[2]
else:
return outputs[0], outputs[1], None
except Exception as e:
raise gr.Error(f"Error processing video: {str(e)}")
# Create Gradio interface
def create_interface():
with gr.Blocks(
title="Video Subtitle Translator",
theme=gr.themes.Soft(),
css="""
.gradio-container {max-width: 1000px; margin: auto;}
.subtitle-info {background: #f0f8ff; padding: 15px; border-radius: 10px; margin: 10px 0;}
"""
) as demo:
gr.HTML("""
<div style="text-align: center; padding: 20px;">
<h1>🎬 Video Subtitle Translator</h1>
<p>Generate and translate subtitles for any video - No size or duration limits!</p>
<p><em>Supports all video formats β€’ Automatic language detection β€’ Fast processing</em></p>
</div>
""")
with gr.Row():
with gr.Column(scale=2):
video_input = gr.File(
label="Upload Video File",
file_types=["video"],
type="filepath"
)
translate_option = gr.Radio(
choices=["Yes", "No"],
value="Yes",
label="Translate to English?",
info="Choose 'No' if you only want transcription in original language"
)
process_btn = gr.Button(
"πŸš€ Generate Subtitles",
variant="primary",
size="lg"
)
with gr.Column(scale=3):
info_output = gr.Textbox(
label="Processing Info",
interactive=False,
elem_classes=["subtitle-info"]
)
original_output = gr.File(
label="πŸ“ Original Subtitles (.srt)",
interactive=False
)
translated_output = gr.File(
label="🌍 English Translated Subtitles (.srt)",
interactive=False,
visible=True
)
gr.HTML("""
<div style="margin-top: 30px; padding: 20px; background: #f8f9fa; border-radius: 10px;">
<h3>πŸ“‹ Instructions:</h3>
<ol>
<li><strong>Upload any video file</strong> - MP4, AVI, MOV, MKV, etc.</li>
<li><strong>Choose translation option</strong> - Yes for English translation, No for original language only</li>
<li><strong>Click "Generate Subtitles"</strong> - Processing time depends on video length</li>
<li><strong>Download your subtitle files</strong> - Use them with any video player</li>
</ol>
<h3>✨ Features:</h3>
<ul>
<li>🎯 <strong>No size limits</strong> - Process videos of any duration</li>
<li>🌐 <strong>Auto language detection</strong> - Supports 50+ languages</li>
<li>⚑ <strong>Lightweight models</strong> - Fast processing on any hardware</li>
<li>πŸ“± <strong>Universal compatibility</strong> - Works with all video formats</li>
<li>πŸ”§ <strong>SRT format</strong> - Compatible with all media players</li>
</ul>
</div>
""")
# Set up the processing
process_btn.click(
fn=process_video_interface,
inputs=[video_input, translate_option],
outputs=[original_output, info_output, translated_output]
)
return demo
# Launch the app
if __name__ == "__main__":
demo = create_interface()
demo.launch(share=True)