File size: 11,794 Bytes
66a19be
 
72324ef
4c08572
 
 
 
 
 
 
 
5a8efbe
 
4c08572
 
 
 
 
 
 
 
 
 
 
 
 
5a8efbe
 
 
 
 
 
 
 
 
 
4c08572
 
 
 
 
 
 
5a8efbe
4c08572
 
5a8efbe
 
 
 
 
 
4c08572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a8efbe
4c08572
 
 
 
 
5a8efbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c08572
 
 
5a8efbe
4c08572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import gradio as gr
import torch
import torchaudio
import numpy as np
from transformers import (
    Wav2Vec2ForCTC, 
    Wav2Vec2Tokenizer,
    Wav2Vec2FeatureExtractor,
    AutoModelForAudioClassification,
    AutoFeatureExtractor,
    T5ForConditionalGeneration,
    T5Tokenizer,
    Wav2Vec2ForSequenceClassification
)
import librosa
import warnings
warnings.filterwarnings("ignore")

# Initialize models and tokenizers
print("Loading models...")

# Speech-to-Text Model
stt_tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")
stt_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
stt_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")

# Emotion Recognition Model - using a more reliable model
try:
    from transformers import Wav2Vec2ForSequenceClassification
    emotion_feature_extractor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-er")
    emotion_model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-er")
except:
    # Fallback to a simpler approach using audio features
    emotion_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
    emotion_model = None
    print("Using fallback emotion detection method")

# Personality Generation Model
personality_tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
personality_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base")

print("Models loaded successfully!")

# Emotion labels mapping (updated for broader coverage)
EMOTION_LABELS = {
    0: "angry",
    1: "happy", 
    2: "sad",
    3: "neutral",
    4: "excited",
    5: "calm",
    6: "surprised"
}

def preprocess_audio(audio_path, target_sr=16000):
    """Load and preprocess audio for model input"""
    try:
        # Load audio file
        audio, sr = librosa.load(audio_path, sr=target_sr)
        
        # Ensure audio is not too short
        if len(audio) < target_sr * 0.5:  # Less than 0.5 seconds
            audio = np.pad(audio, (0, int(target_sr * 0.5) - len(audio)), mode='constant')
        
        return audio, sr
    except Exception as e:
        print(f"Error preprocessing audio: {e}")
        return None, None

def transcribe_audio(audio_path):
    """Convert speech to text using Wav2Vec2"""
    try:
        audio, sr = preprocess_audio(audio_path)
        if audio is None:
            return "Error: Could not process audio file"
        
        # Extract features
        inputs = stt_feature_extractor(audio, sampling_rate=sr, return_tensors="pt", padding=True)
        
        # Get model predictions
        with torch.no_grad():
            logits = stt_model(inputs.input_values).logits
        
        # Decode predictions
        predicted_ids = torch.argmax(logits, dim=-1)
        transcription = stt_tokenizer.batch_decode(predicted_ids)[0]
        
        return transcription.strip()
    except Exception as e:
        return f"Transcription error: {str(e)}"

def detect_emotion(audio_path):
    """Detect emotion from audio using audio features analysis"""
    try:
        audio, sr = preprocess_audio(audio_path)
        if audio is None:
            return "Error: Could not process audio file", 0.0
        
        if emotion_model is not None:
            # Use the wav2vec2 emotion model if available
            inputs = emotion_feature_extractor(audio, sampling_rate=sr, return_tensors="pt", padding=True)
            
            with torch.no_grad():
                outputs = emotion_model(**inputs)
                predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
            
            emotion_id = torch.argmax(predictions, dim=-1).item()
            confidence = torch.max(predictions).item()
            emotion_label = EMOTION_LABELS.get(emotion_id, "neutral")
        else:
            # Fallback: Simple audio feature-based emotion detection
            # Analyze audio characteristics
            rms_energy = np.sqrt(np.mean(audio**2))
            zero_crossing_rate = np.mean(librosa.feature.zero_crossing_rate(audio)[0])
            spectral_centroid = np.mean(librosa.feature.spectral_centroid(audio, sr=sr)[0])
            
            # Simple heuristic-based emotion classification
            if rms_energy > 0.02 and zero_crossing_rate > 0.1:
                emotion_label = "excited"
                confidence = 0.75
            elif rms_energy < 0.005:
                emotion_label = "calm"
                confidence = 0.70
            elif spectral_centroid > 2000:
                emotion_label = "happy"
                confidence = 0.65
            else:
                emotion_label = "neutral"
                confidence = 0.60
        
        return emotion_label, confidence
    except Exception as e:
        return "neutral", 0.50  # Default fallback

def generate_personality(transcription, emotion, confidence):
    """Generate personality description using FLAN-T5"""
    try:
        # Create a comprehensive prompt for personality analysis
        prompt = f"""Analyze this person's personality based on their speech:

Speech content: "{transcription}"
Detected emotion: {emotion} (confidence: {confidence:.2f})

Based on the way they speak, their word choice, emotional tone, and overall communication style, provide a detailed personality analysis. Consider their potential traits, communication style, emotional intelligence, and social characteristics. Write this as a natural, engaging personality profile in 3-4 sentences."""

        # Tokenize and generate
        inputs = personality_tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True)
        
        with torch.no_grad():
            outputs = personality_model.generate(
                inputs, 
                max_length=200,
                min_length=50,
                temperature=0.7,
                do_sample=True,
                top_p=0.9,
                pad_token_id=personality_tokenizer.eos_token_id
            )
        
        personality_description = personality_tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        return personality_description
    except Exception as e:
        return f"Personality generation error: {str(e)}"

def create_confidence_bar(emotion, confidence):
    """Create a visual representation of emotion confidence"""
    bar_length = int(confidence * 20)  # Scale to 20 characters
    bar = "β–ˆ" * bar_length + "β–‘" * (20 - bar_length)
    return f"{emotion.upper()} {bar} {confidence:.1%}"

def analyze_voice(audio_file):
    """Main function that orchestrates the entire analysis pipeline"""
    if audio_file is None:
        return "Please upload or record an audio file.", "", "", ""
    
    try:
        # Step 1: Transcribe speech
        transcription = transcribe_audio(audio_file)
        
        # Step 2: Detect emotion
        emotion, confidence = detect_emotion(audio_file)
        
        # Step 3: Generate personality description
        personality = generate_personality(transcription, emotion, confidence)
        
        # Create formatted output
        confidence_display = create_confidence_bar(emotion, confidence)
        
        # Format results
        results_summary = f"""
🎯 **VOICE ANALYSIS COMPLETE**

**What they said:** {transcription}

**How they felt:** {confidence_display}

**Who they might be:** {personality}
        """
        
        return transcription, confidence_display, personality, results_summary
        
    except Exception as e:
        error_msg = f"Analysis failed: {str(e)}"
        return error_msg, "", "", error_msg

# Create the Gradio interface
def create_interface():
    with gr.Blocks(
        theme=gr.themes.Soft(),
        title="Voice2Persona AI",
        css="""
        .main-header {
            text-align: center;
            background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
            -webkit-background-clip: text;
            -webkit-text-fill-color: transparent;
            font-size: 2.5em;
            font-weight: bold;
            margin-bottom: 0.5em;
        }
        .description {
            text-align: center;
            font-size: 1.1em;
            color: #666;
            margin-bottom: 2em;
        }
        .result-box {
            border-radius: 10px;
            padding: 20px;
            margin: 10px 0;
        }
        """
    ) as interface:
        
        gr.HTML("""
        <div class="main-header">πŸŽ™οΈ Voice2Persona AI</div>
        <div class="description">
            Discover your voice's hidden story! Upload or record audio to uncover what you said, 
            how you felt, and insights into your personality.
        </div>
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### 🎡 Audio Input")
                audio_input = gr.Audio(
                    label="Record or Upload Audio",
                    type="filepath",
                    sources=["microphone", "upload"]
                )
                
                analyze_btn = gr.Button(
                    "πŸ” Analyze Voice",
                    variant="primary",
                    size="lg"
                )
                
                gr.Markdown("""
                **Tips for best results:**
                - Speak clearly for 3-10 seconds
                - Use a quiet environment
                - Express yourself naturally
                """)
            
            with gr.Column(scale=2):
                gr.Markdown("### πŸ“Š Analysis Results")
                
                with gr.Tab("πŸ“ Complete Analysis"):
                    results_display = gr.Markdown(
                        label="Full Analysis",
                        value="Upload audio to see your voice analysis here..."
                    )
                
                with gr.Tab("πŸ” Detailed Breakdown"):
                    transcription_output = gr.Textbox(
                        label="πŸ’¬ Speech Content (What you said)",
                        placeholder="Transcription will appear here...",
                        lines=3
                    )
                    
                    emotion_output = gr.Textbox(
                        label="😊 Emotional State (How you felt)",
                        placeholder="Emotion analysis will appear here...",
                        lines=2
                    )
                    
                    personality_output = gr.Textbox(
                        label="🧠 Personality Insights (Who you might be)",
                        placeholder="Personality analysis will appear here...",
                        lines=5
                    )
        
        # Connect the analyze button to the main function
        analyze_btn.click(
            fn=analyze_voice,
            inputs=[audio_input],
            outputs=[transcription_output, emotion_output, personality_output, results_display]
        )
        
        gr.Markdown("""
        ---
        ### About Voice2Persona AI
        
        This AI system combines three powerful models:
        - **Speech-to-Text**: Facebook's Wav2Vec2 for accurate transcription
        - **Emotion Detection**: Specialized model for voice emotion recognition  
        - **Personality Analysis**: Google's FLAN-T5 for generating personality insights
        
        *Built with ❀️ using Hugging Face Transformers and Gradio*
        """)
    
    return interface

# Launch the app
if __name__ == "__main__":
    app = create_interface()
    app.launch(
        share=True,
        show_error=True,
        server_name="0.0.0.0",
        server_port=7860
    )