Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
3 |
import torch
|
4 |
-
import
|
5 |
|
6 |
# Load pretrained model and processor
|
7 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
@@ -11,28 +11,15 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
11 |
model.to(device)
|
12 |
|
13 |
# Transcription function
|
14 |
-
def transcribe(
|
15 |
-
if
|
16 |
return "Please upload or record an audio file."
|
17 |
|
18 |
-
# audio
|
19 |
-
|
20 |
-
audio_np, sample_rate = audio
|
21 |
-
else:
|
22 |
-
return "Invalid audio input."
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
audio_np = np.mean(audio_np, axis=1)
|
27 |
-
|
28 |
-
# Resample to 16000 Hz if necessary
|
29 |
-
if sample_rate != 16000:
|
30 |
-
import librosa
|
31 |
-
audio_np = librosa.resample(audio_np, orig_sr=sample_rate, target_sr=16000)
|
32 |
-
sample_rate = 16000
|
33 |
-
|
34 |
-
# Process and run model
|
35 |
-
input_values = processor(audio_np, sampling_rate=sample_rate, return_tensors="pt").input_values.to(device)
|
36 |
with torch.no_grad():
|
37 |
logits = model(input_values).logits
|
38 |
predicted_ids = torch.argmax(logits, dim=-1)
|
@@ -45,7 +32,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as app:
|
|
45 |
gr.Markdown("Upload or record your voice, and this app will transcribe what you say.")
|
46 |
|
47 |
with gr.Row():
|
48 |
-
audio_input = gr.Audio(label="π€ Record or Upload Your Voice", type="
|
49 |
output_text = gr.Textbox(label="π Transcribed Text")
|
50 |
|
51 |
transcribe_button = gr.Button("Transcribe")
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
3 |
import torch
|
4 |
+
import librosa
|
5 |
|
6 |
# Load pretrained model and processor
|
7 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
|
|
11 |
model.to(device)
|
12 |
|
13 |
# Transcription function
|
14 |
+
def transcribe(audio_path):
|
15 |
+
if audio_path is None:
|
16 |
return "Please upload or record an audio file."
|
17 |
|
18 |
+
# Load audio file and resample to 16kHz mono
|
19 |
+
audio_np, sample_rate = librosa.load(audio_path, sr=16000)
|
|
|
|
|
|
|
20 |
|
21 |
+
# Process and transcribe
|
22 |
+
input_values = processor(audio_np, sampling_rate=16000, return_tensors="pt").input_values.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
with torch.no_grad():
|
24 |
logits = model(input_values).logits
|
25 |
predicted_ids = torch.argmax(logits, dim=-1)
|
|
|
32 |
gr.Markdown("Upload or record your voice, and this app will transcribe what you say.")
|
33 |
|
34 |
with gr.Row():
|
35 |
+
audio_input = gr.Audio(label="π€ Record or Upload Your Voice", type="filepath")
|
36 |
output_text = gr.Textbox(label="π Transcribed Text")
|
37 |
|
38 |
transcribe_button = gr.Button("Transcribe")
|