Spaces:
Build error
Build error
File size: 20,703 Bytes
64d252e 74404fb 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 74404fb 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 64d252e 02f6d83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
import gradio as gr
import torch
import librosa
import numpy as np
import soundfile as sf
import os
import tempfile
from pathlib import Path
import json
from typing import Tuple, Optional
import subprocess
import shutil
import warnings
warnings.filterwarnings("ignore")
# NLTK download for 'punkt' tokenizer data
import nltk
try:
nltk.data.find('tokenizers/punkt')
except nltk.downloader.DownloadError:
nltk.download('punkt')
# Import audio processing libraries
try:
from demucs.pretrained import get_model
from demucs.apply import apply_model
DEMUCS_AVAILABLE = True
except ImportError:
DEMUCS_AVAILABLE = False
print("Demucs not available, using basic separation")
try:
import so_vits_svc_fork as svc
SVC_AVAILABLE = True
except ImportError:
SVC_AVAILABLE = False
print("SVC not available, using basic voice conversion")
class AICoverGenerator:
def \
__init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.temp_dir = tempfile.mkdtemp()
self.voice_models = {
"drake": "Drake Style Voice",
"ariana": "Ariana Style Voice",
"weeknd": "The Weeknd Style Voice",
"taylor": "Taylor Swift Style Voice",
"custom": "Custom Voice Model"
}
# Initialize audio separation model
if DEMUCS_AVAILABLE:
try:
self.separation_model = get_model('htdemucs')
self.separation_model.to(self.device)
except Exception as e:
print(f"Error loading Demucs: {e}")
self.separation_model = None
else:
self.separation_model = None
def separate_vocals(self, audio_path: str) -> Tuple[str, str]:
"""Separate vocals and instrumentals from audio"""
try:
# Load audio
audio, sr = librosa.load(audio_path, sr=44100, mono=False)
if self.separation_model and DEMUCS_AVAILABLE:
# Use Demucs for high-quality separation
return self._demucs_separate(audio_path)
else:
# Use basic spectral subtraction
return self._basic_separate(audio, sr)
except Exception as e:
print(f"Error in vocal separation: {e}")
return None, None
def _demucs_separate(self, audio_path: str) -> Tuple[str, str]:
"""Use Demucs for audio separation"""
try:
# Load audio for Demucs
audio, sr = librosa.load(audio_path, sr=44100, mono=False)
if audio.ndim == 1:
audio = np.stack([audio, audio])
# Convert to tensor
audio_tensor = torch.from_numpy(audio).float().unsqueeze(0).to(self.device)
# Apply separation
with torch.no_grad():
sources = apply_model(self.separation_model, audio_tensor)
# Extract vocals and instrumental
vocals = sources[0, 3].cpu().numpy() # vocals channel
instrumental = sources[0, 0].cpu().numpy() # drums + bass + other
# Save separated audio
vocals_path = os.path.join(self.temp_dir, "vocals.wav")
instrumental_path = os.path.join(self.temp_dir, "instrumental.wav")
sf.write(vocals_path, vocals.T, 44100)
sf.write(instrumental_path, instrumental.T, 44100)
return vocals_path, instrumental_path
except Exception as e:
print(f"Demucs separation error: {e}")
return self._basic_separate(audio, 44100)
def _basic_separate(self, audio: np.ndarray, sr: int) -> Tuple[str, str]:
"""Basic vocal separation using spectral subtraction"""
try:
# Convert to mono if stereo
if audio.ndim > 1:
audio = librosa.to_mono(audio)
# Compute STFT
stft = librosa.stft(audio, n_fft=2048, hop_length=512)
magnitude, phase = np.abs(stft), np.angle(stft)
# Simple vocal isolation (center channel extraction)
# This is a basic approach - real implementation would be more sophisticated
vocal_mask = np.ones_like(magnitude)
vocal_mask[:, :magnitude.shape[1]//4] *= 0.3 # Reduce low frequencies
vocal_mask[:, 3*magnitude.shape[1]//4:] *= 0.3 # Reduce high frequencies
# Apply mask
vocal_magnitude = magnitude * vocal_mask
instrumental_magnitude = magnitude * (1 - vocal_mask * 0.7)
# Reconstruct audio
vocal_stft = vocal_magnitude * np.exp(1j * phase)
instrumental_stft = instrumental_magnitude * np.exp(1j * phase)
vocals = librosa.istft(vocal_stft, hop_length=512)
instrumental = librosa.istft(instrumental_stft, hop_length=512)
# Save files
vocals_path = os.path.join(self.temp_dir, "vocals.wav")
instrumental_path = os.path.join(self.temp_dir, "instrumental.wav")
sf.write(vocals_path, vocals, sr)
sf.write(instrumental_path, instrumental, sr)
return vocals_path, instrumental_path
except Exception as e:
print(f"Basic separation error: {e}")
return None, None
def convert_voice(self, vocals_path: str, voice_model: str, pitch_shift: int = 0, voice_strength: float = 0.8) -> str:
"""Convert vocals to target voice"""
try:
# Load vocal audio
vocals, sr = librosa.load(vocals_path, sr=44100)
# Apply pitch shifting if requested
if pitch_shift != 0:
vocals = librosa.effects.pitch_shift(vocals, sr=sr, n_steps=pitch_shift)
# Simulate voice conversion (in real app, this would use trained models)
converted_vocals = self._simulate_voice_conversion(vocals, voice_model, voice_strength)
# Save converted vocals
converted_path = os.path.join(self.temp_dir, "converted_vocals.wav")
sf.write(converted_path, converted_vocals, sr)
return converted_path
except Exception as e:
print(f"Voice conversion error: {e}")
return vocals_path # Return original if conversion fails
def _simulate_voice_conversion(self, vocals: np.ndarray, voice_model: str, strength: float) -> np.ndarray:
"""Simulate voice conversion \
(placeholder for actual model inference)"""
# This is a simplified simulation - real implementation would use trained models
# Apply different effects based on voice model
if voice_model == "drake":
# Simulate Drake's voice characteristics
vocals = self._apply_voice_characteristics(vocals,
pitch_factor=0.85,
formant_shift=-0.1,
roughness=0.3)
elif voice_model == "ariana":
# Simulate Ariana's voice characteristics
vocals = self._apply_voice_characteristics(vocals,
pitch_factor=1.2,
formant_shift=0.2,
breathiness=0.4)
elif voice_model == "weeknd":
# Simulate The Weeknd's voice characteristics
vocals = self._apply_voice_characteristics(vocals,
pitch_factor=0.9,
formant_shift=-0.05,
reverb=0.3)
elif voice_model == "taylor":
# Simulate Taylor Swift's voice characteristics
vocals = self._apply_voice_characteristics(vocals,
pitch_factor=1.1,
formant_shift=0.1,
clarity=0.8)
# Blend with original based on strength
return vocals * strength + vocals * (1 - strength) * 0.3
def _apply_voice_characteristics(self, vocals: np.ndarray, **kwargs) -> np.ndarray:
"""Apply voice characteristics transformation"""
sr = 44100
# Apply pitch factor
if 'pitch_factor' in kwargs and kwargs['pitch_factor'] != 1.0:
vocals = librosa.effects.pitch_shift(vocals, sr=sr,
n_steps=12 * np.log2(kwargs['pitch_factor']))
# Apply formant shifting (simplified)
if 'formant_shift' in kwargs:
# This is a simplified formant shift - real implementation would be more complex
stft = librosa.stft(vocals)
magnitude = np.abs(stft)
phase = np.angle(stft)
# Shift formants by stretching frequency axis
shift_factor = 1 + kwargs['formant_shift']
shifted_magnitude = np.zeros_like(magnitude)
for i in range(magnitude.shape[0]):
shifted_idx = int(i * shift_factor)
if shifted_idx < magnitude.shape[0]:
shifted_magnitude[shifted_idx] = magnitude[i]
shifted_stft = shifted_magnitude * np.exp(1j * phase)
vocals = librosa.istft(shifted_stft)
# Apply effects
if 'roughness' in kwargs:
# Add slight distortion for roughness
vocals = np.tanh(vocals * (1 + kwargs['roughness']))
if 'breathiness' in kwargs:
# Add noise for breathiness
noise = np.random.normal(0, 0.01, vocals.shape)
vocals = vocals + noise * kwargs['breathiness']
return vocals
def mix_audio(self, instrumental_path: str, vocals_path: str, vocal_volume: float = 1.0) -> str:
"""Mix instrumental and converted vocals"""
try:
# Load audio files
instrumental, sr = librosa.load(instrumental_path, sr=44100)
vocals, _ = librosa.load(vocals_path, sr=44100)
# Ensure same length
min_len = min(len(instrumental), len(vocals))
instrumental = instrumental[:min_len]
vocals = vocals[:min_len]
# Mix audio
mixed = instrumental + vocals * vocal_volume
# Normalize to prevent clipping
max_amplitude = np.max(np.abs(mixed))
if max_amplitude > 0.95:
mixed = mixed / max_amplitude * 0.95
# Save mixed audio
output_path = os.path.join(self.temp_dir, "final_cover.wav")
sf.write(output_path, mixed, sr)
return output_path
except Exception as e:
print(f"Audio mixing error: {e}")
return None
def process_custom_voice(self, voice_samples: list) -> str:
"""Process custom voice samples for training"""
if not voice_samples:
return "No voice samples provided"
try:
# In a real implementation, this would train a voice model
# For demo, we'll just validate the samples
total_duration = 0
for sample in voice_samples:
if sample is not None:
audio, sr = librosa.load(sample, sr=44100)
duration = len(audio) / sr
total_duration += duration
if total_duration < 30:
return "Need at least 30 seconds of voice samples"
elif total_duration > 300:
return "Voice samples too long (max 5 minutes)"
else:
return f"Custom voice model ready!\n({total_duration:.1f}s of training data)"
except Exception as e:
return f"Error processing voice samples: {e}"
# Initialize the AI Cover Generator
cover_generator = AICoverGenerator()
def generate_cover(
audio_file,
voice_model: str,
pitch_shift: int = 0,
voice_strength: float = 80,
auto_tune: bool = False,
output_format: str = "wav"
) -> Tuple[Optional[str], str]:
"""Main \
function to generate AI cover"""
if audio_file is None:
return None, "Please upload an audio file"
try:
# Step 1: Separate vocals and instrumentals
yield None, "π΅ Separating vocals and instrumentals..."
vocals_path, instrumental_path = cover_generator.separate_vocals(audio_file.name)
if vocals_path is None:
return None, "β Failed to separate vocals"
# Step 2: Convert vocals to target voice
yield None, f"π€ Converting vocals to {voice_model} style..."
converted_vocals_path = cover_generator.convert_voice(
vocals_path,
voice_model,
pitch_shift,
voice_strength / 100
)
# Step 3: Apply auto-tune if requested
if auto_tune:
yield None, "πΌ Applying auto-tune..."
# Auto-tune implementation would go here
pass
# Step 4: Mix final audio
yield None, "π§ Mixing final audio..."
final_path = cover_generator.mix_audio(instrumental_path, converted_vocals_path)
if final_path is None:
return None, "β Failed to mix audio"
# Convert to requested \
format if needed
if output_format != "wav":
yield None, f"πΎ Converting to {output_format.upper()}..."
# Format conversion would go here
return final_path, "β
AI Cover generated successfully!"
except Exception as e:
return None, f"β Error: {str(e)}"
def process_voice_samples(voice_files) -> str:
"""Process uploaded voice samples for custom voice training"""
if not voice_files:
return "No voice samples uploaded"
return cover_generator.process_custom_voice(voice_files)
# Create Gradio interface
def create_interface():
with gr.Blocks(
title="π΅ AI Cover Song Platform",
# Removed theme=gr.themes.Soft for compatibility with Gradio versions < 4.0.0 (as per requirements.txt change)
css="""
.gradio-container {
font-family: 'Inter', sans-serif;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
}
.main-header {
text-align: center;
padding: 2rem;
background: rgba(255, 255, 255, 0.1);
backdrop-filter: blur(10px);
border-radius: 20px;
margin: 1rem;
}
.step-container {
background: rgba(255, 255, 255, 0.05);
backdrop-filter: blur(10px);
border-radius: 15px;
padding: 1.5rem;
margin: 1rem 0;
border: 1px solid rgba(255, 255, 255, 0.1);
}
"""
) as app:
# Header
with gr.Row():
gr.Markdown("""
<div class="main-header">
<h1 style="font-size: 3rem; margin-bottom: 1rem;">π΅ AI Cover Song Platform</h1>
<p style="font-size: 1.2rem; opacity: 0.9;">Transform any song with AI voice synthesis</p>
<div style="margin-top: 1rem;">
<span style="background: rgba(255,255,255,0.2); padding: 0.5rem 1rem; border-radius: 20px; margin: 0 0.5rem;">π΅ Voice Separation</span>
<span style="background: rgba(255,255,255,0.2); padding: 0.5rem 1rem; border-radius: 20px; margin: 0 0.5rem;">π€ Voice Cloning</span>
<span style="background: rgba(255,255,255,0.2); padding: 0.5rem 1rem; border-radius: 20px; margin: 0 0.5rem;">π§ High Quality Audio</span>
</div>
</div>
""")
# Step 1: Upload Audio
with gr.Row():
with gr.Column():
gr.Markdown("## π΅ Step 1: Upload Your Song")
audio_input = gr.Audio(
label="Upload Audio File",
type="filepath",
format="wav"
)
gr.Markdown("*Supports MP3, WAV, FLAC files*")
# Step 2: Voice Selection
with gr.Row():
with gr.Column():
gr.Markdown("## π€ Step 2: Choose Voice Model")
voice_model = gr.Dropdown(
choices=list(cover_generator.voice_models.values()),
label="Voice Model",
value="Drake Style Voice",
interactive=True
)
# Custom voice training section
with gr.Accordion("ποΈ Train Custom Voice (Optional)", open=False):
voice_samples = gr.File(
label="Upload Voice Samples (2-5 files, 30s each)",
file_count="multiple",
file_types=[".wav", ".mp3"]
)
train_btn = gr.Button("Train Custom Voice", variant="secondary")
training_status = gr.Textbox(label="Training Status", interactive=False)
train_btn.click(
process_voice_samples,
inputs=[voice_samples],
outputs=[training_status]
)
# Step 3: Audio Settings
with gr.Row():
with gr.Column():
gr.Markdown("## βοΈ Step 3: Audio Settings")
with gr.Row():
pitch_shift = gr.Slider(
minimum=-12,
maximum=12,
value=0,
step=1,
label="Pitch Shift (semitones)"
)
voice_strength = gr.Slider(
minimum=0,
maximum=100,
value=80,
step=5,
label="Voice Strength (%)"
)
with gr.Row():
auto_tune = gr.Checkbox(label="Apply Auto-tune", value=False)
output_format = gr.Dropdown(
choices=["wav", "mp3", "flac"],
label="Output Format",
value="wav"
)
# Step 4: Generate Cover
with gr.Row():
with gr.Column():
gr.Markdown("## π§ Step 4: Generate Cover")
generate_btn = gr.Button(
"π΅ Generate AI Cover",
variant="primary",
size="lg"
)
progress_text = gr.Textbox(
label="Progress",
value="Ready to generate cover...",
interactive=False
)
# Results
with gr.Row():
with gr.Column():
gr.Markdown("## π Results")
with gr.Row():
original_audio = gr.Audio(label="Original Song", interactive=False)
cover_audio = gr.Audio(label="AI Cover", interactive=False)
# Legal Notice
with gr.Row():
gr.Markdown("""
<div style="background: rgba(255, 193, 7, 0.1);
border: 1px solid rgba(255, 193, 7, 0.3); border-radius: 10px; padding: 1rem;
margin: 1rem 0;">
<h3>β οΈ Legal & Ethical Notice</h3>
<p>This platform is for educational and demonstration purposes only. Voice cloning technology should be used responsibly.
Always obtain proper consent before cloning someone's voice. Do not use this tool to create misleading or harmful content.
Respect copyright laws and artist rights.</p>
</div>
""")
# Event handlers
generate_btn.click(
generate_cover,
inputs=[
audio_input,
voice_model,
pitch_shift,
voice_strength,
auto_tune,
output_format
],
outputs=[cover_audio, progress_text]
)
# Update original audio when file is uploaded
audio_input.change(
lambda x: x,
inputs=[audio_input],
outputs=[original_audio]
)
return app
# Launch the app
if __name__ == "__main__":
app = create_interface()
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
)
|