SuperPrompt-v1 / app.py
Nick088's picture
Update app.py
7c64f78 verified
raw
history blame
3.55 kB
import functools as ft
import gradio as gr
import torch
import random
import transformers
from transformers import T5Tokenizer, T5ForConditionalGeneration
if torch.cuda.is_available():
device = "cuda"
print("Using GPU")
else:
device = "cpu"
print("Using CPU")
tokenizer = T5Tokenizer.from_pretrained("roborovski/superprompt-v1")
model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", torch_dtype=torch.float16)
model.to(device)
@ft.lru_cache(maxsize=1024)
def generate(your_prompt, max_new_tokens, repetition_penalty, temperature, model_precision_type, top_p, top_k, seed):
if seed == 0:
seed = random.randint(1, 2**32-1)
transformers.set_seed(seed)
if model_precision_type == "fp16":
dtype = torch.float16
elif model_precision_type == "fp32":
dtype = torch.float32
model.to(dtype)
with torch.inference_mode():
input_text = f"Expand the following prompt to add more detail: {your_prompt}"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
outputs = model.generate(
input_ids,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
)
better_prompt = tokenizer.decode(outputs[0], skip_special_tokens=True)
return better_prompt
your_prompt = gr.Textbox(label="Your Prompt", interactive=True)
max_new_tokens = gr.Slider(value=512, minimum=250, maximum=512, step=1, interactive=True, label="Max New Tokens", info="The maximum numbers of new tokens, controls how long is the output")
repetition_penalty = gr.Slider(value=1.2, minimum=0, maximum=2, step=0.05, interactive=True, label="Repetition Penalty", info="Penalize repeated tokens, making the AI repeat less itself")
temperature = gr.Slider(value=0.5, minimum=0, maximum=1, step=0.05, interactive=True, label="Temperature", info="Higher values produce more diverse outputs")
model_precision_type = gr.Dropdown(["fp16", "fp32"], value="fp16", label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which is more precise but more resource consuming")
top_p = gr.Slider(value=1, minimum=0, maximum=2, step=0.05, interactive=True, label="Top P", info="Higher values sample more low-probability tokens")
top_k = gr.Slider(value=1, minimum=1, maximum=100, step=1, interactive=True, label="Top K", info="Higher k means more diverse outputs by considering a range of tokens")
seed = gr.Number(value=42, interactive=True, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")
examples = [
["A storefront with 'Text to Image' written on it.", 512, 1.2, 0.5, "fp16", 1, 50, 42]
]
gr.Interface(
fn=generate,
inputs=[your_prompt, max_new_tokens, repetition_penalty, temperature, model_precision_type, top_p, top_k, seed],
outputs=gr.Textbox(label="Better Prompt"),
title="SuperPrompt-v1",
description='Make your prompts more detailed! <br> <a href="https://github.com/Nick088Official/SuperPrompt-v1">Github Repository & Model used</a> <br> <a href="https://brianfitzgerald.xyz/prompt-augmentation/">Model Blog</a> <br> Task Prefix: "Expand the following prompt to add more detail:" is already setted! <br> Hugging Face Space made by [Nick088](https://linktr.ee/Nick088)',
examples=examples,
).launch(share=True)