File size: 52,291 Bytes
e611d1f 06ed853 e611d1f 06ed853 e611d1f 0c79894 e611d1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 |
import gradio as gr
import os
import json
import tempfile
import traceback
import numpy as np
import pandas as pd
from pathlib import Path
from typing import Optional, Tuple, Dict, Any
import torch
import time
import io
import base64
import zipfile
from datetime import datetime
# Dynamic installation of PyTorch Geometric dependencies
def install_torch_geometric_deps():
"""Install PyTorch Geometric dependencies at runtime to avoid compilation issues during Hugging Face Spaces build"""
import subprocess
import sys
# Check if torch-scatter is already installed
try:
import torch_scatter
print("โ
torch-scatter already installed")
return True
except ImportError:
print("๐ Installing torch-scatter and related packages...")
# Get PyTorch version and CUDA info
torch_version = torch.__version__
torch_version_str = '+'.join(torch_version.split('+')[:1]) # Remove CUDA info
# Use PyTorch Geometric official recommended installation method
try:
# For CPU version, use official CPU wheel
pip_cmd = [
sys.executable, "-m", "pip", "install",
"torch-scatter", "torch-sparse", "torch-cluster", "torch-spline-conv",
"-f", f"https://data.pyg.org/whl/torch-{torch_version_str}+cpu.html",
"--no-cache-dir"
]
print(f"Running: {' '.join(pip_cmd)}")
result = subprocess.run(pip_cmd, capture_output=True, text=True, timeout=300)
if result.returncode == 0:
print("โ
Successfully installed torch-scatter and related packages")
return True
else:
print(f"โ Failed to install packages: {result.stderr}")
# Try simplified installation method
try:
simple_cmd = [sys.executable, "-m", "pip", "install", "torch-scatter", "--no-cache-dir"]
result = subprocess.run(simple_cmd, capture_output=True, text=True, timeout=300)
if result.returncode == 0:
print("โ
Successfully installed torch-scatter with simple method")
return True
else:
print(f"โ Simple install also failed: {result.stderr}")
return False
except Exception as e:
print(f"โ Exception during simple install: {e}")
return False
except subprocess.TimeoutExpired:
print("โ Installation timeout - packages may not be available")
return False
except Exception as e:
print(f"โ Exception during installation: {e}")
return False
# Try to install PyTorch Geometric dependencies
deps_installed = install_torch_geometric_deps()
if not deps_installed:
print("โ ๏ธ Warning: PyTorch Geometric dependencies not installed. Some features may not work.")
print("The application will try to continue with limited functionality.")
# Set up paths and imports for different deployment environments
import sys
BASE_DIR = Path(__file__).parent
# Smart import handling for different environments
def setup_imports():
"""Smart import setup for different deployment environments"""
global AntigenChain, PROJECT_BASE_DIR
# Method 1: Try importing from src directory (local development)
if (BASE_DIR / "src").exists():
sys.path.insert(0, str(BASE_DIR))
try:
from src.bce.antigen.antigen import AntigenChain
from src.bce.utils.constants import BASE_DIR as PROJECT_BASE_DIR
print("โ
Successfully imported from src/ directory")
return True
except ImportError as e:
print(f"โ Failed to import from src/: {e}")
# Method 2: Try adding src to path and direct import (Hugging Face Spaces)
src_path = BASE_DIR / "src"
if src_path.exists():
sys.path.insert(0, str(src_path))
try:
from bce.antigen.antigen import AntigenChain
from bce.utils.constants import BASE_DIR as PROJECT_BASE_DIR
print("โ
Successfully imported from src/ added to path")
return True
except ImportError as e:
print(f"โ Failed to import with src/ in path: {e}")
# Method 3: Try direct import (if package is installed)
try:
from bce.antigen.antigen import AntigenChain
from bce.utils.constants import BASE_DIR as PROJECT_BASE_DIR
print("โ
Successfully imported from installed package")
return True
except ImportError as e:
print(f"โ Failed to import from installed package: {e}")
# If all methods fail, use default settings
print("โ ๏ธ All import methods failed, using fallback settings")
PROJECT_BASE_DIR = BASE_DIR
return False
# Execute import setup
import_success = setup_imports()
if not import_success:
print("โ Critical: Could not import BCE modules. Please check the file structure.")
print("Expected structure:")
print("- src/bce/antigen/antigen.py")
print("- src/bce/utils/constants.py")
print("- src/bce/model/ReCEP.py")
print("- src/bce/data/utils.py")
sys.exit(1)
# Configuration
DEFAULT_MODEL_PATH = os.getenv("BCE_MODEL_PATH", str(PROJECT_BASE_DIR / "models" / "ReCEP" / "20250626_110438" / "best_mcc_model.bin"))
ESM_TOKEN = os.getenv("ESM_TOKEN", "1mzAo8l1uxaU8UfVcGgV7B")
# PDB data directory
PDB_DATA_DIR = PROJECT_BASE_DIR / "data" / "pdb"
PDB_DATA_DIR.mkdir(parents=True, exist_ok=True)
def validate_pdb_id(pdb_id: str) -> bool:
"""Validate PDB ID format"""
if not pdb_id or len(pdb_id) != 4:
return False
return pdb_id.isalnum()
def validate_chain_id(chain_id: str) -> bool:
"""Validate chain ID format"""
if not chain_id or len(chain_id) != 1:
return False
return chain_id.isalnum()
def create_pdb_visualization_html(pdb_data: str, predicted_epitopes: list,
predictions: dict, protein_id: str, top_k_regions: list = None) -> str:
"""Create HTML with 3Dmol.js visualization compatible with Gradio - enhanced version with more features"""
# Prepare data for JavaScript
epitope_residues = predicted_epitopes
# Process top_k_regions for visualization
processed_regions = []
if top_k_regions:
for i, region in enumerate(top_k_regions):
if isinstance(region, dict):
processed_regions.append({
'center_idx': region.get('center_idx', 0),
'center_residue': region.get('center_residue', region.get('center_idx', 0)),
'covered_residues': region.get('covered_residues', region.get('covered_indices', [])),
'radius': 19.0, # Default radius
'predicted_value': region.get('graph_pred', 0.0)
})
# Create a unique ID for this visualization to avoid conflicts
import uuid
viewer_id = f"viewer_{uuid.uuid4().hex[:8]}"
html_content = f"""
<div style="width: 100%; height: 600px; border: 1px solid #ddd; border-radius: 8px; overflow: hidden;">
<div style="padding: 10px; background: #f8f9fa; border-bottom: 1px solid #ddd;">
<h3 style="margin: 0 0 10px 0; color: #333;">3D Structure Visualization - {protein_id}</h3>
<div style="display: flex; gap: 15px; align-items: center; flex-wrap: wrap;">
<div>
<label style="font-weight: bold; margin-right: 5px;">Display Mode:</label>
<select id="vizMode_{viewer_id}" onchange="updateVisualization_{viewer_id}()" style="padding: 4px;">
<option value="prediction">Predicted Epitopes</option>
<option value="probability">Probability Gradient</option>
<option value="regions">Top-k Regions</option>
</select>
</div>
<div>
<label style="font-weight: bold; margin-right: 5px;">Style:</label>
<select id="vizStyle_{viewer_id}" onchange="updateVisualization_{viewer_id}()" style="padding: 4px;">
<option value="cartoon">Cartoon</option>
<option value="surface">Surface</option>
<option value="stick">Stick</option>
<option value="sphere">Sphere</option>
</select>
</div>
<div>
<label style="font-weight: bold; margin-right: 5px;">
<input type="checkbox" id="showSpheres_{viewer_id}" onchange="updateVisualization_{viewer_id}()" style="margin-right: 3px;"> Show Spheres
</label>
</div>
<div>
<label style="font-weight: bold; margin-right: 5px;">Sphere Display:</label>
<select id="sphereCount_{viewer_id}" onchange="handleSphereCountChange_{viewer_id}()" style="padding: 4px;">
<option value="1">Top 1</option>
<option value="2">Top 2</option>
<option value="3">Top 3</option>
<option value="4">Top 4</option>
<option value="5" selected>Top 5</option>
<option value="6">Top 6</option>
<option value="7">Top 7</option>
<option value="all">All Spheres</option>
<option value="custom">Custom Selection</option>
</select>
</div>
<div id="customSphereSelection_{viewer_id}" style="display: none; margin-top: 10px; padding: 10px; background: #f9f9f9; border-radius: 5px; max-height: 120px; overflow-y: auto;">
<label style="font-weight: bold; margin-bottom: 5px; display: block;">Select Spheres to Display:</label>
<div id="sphereCheckboxes_{viewer_id}" style="display: flex; flex-wrap: wrap; gap: 8px; max-height: 80px; overflow-y: auto;">
<!-- Checkboxes will be dynamically generated -->
</div>
</div>
<div>
<button onclick="resetView_{viewer_id}()" style="padding: 4px 8px; margin-right: 5px;">Reset View</button>
<button onclick="saveImage_{viewer_id}()" style="padding: 4px 8px;">Save Image</button>
</div>
</div>
</div>
<div id="{viewer_id}" style="width: 100%; height: 520px; min-height: 400px; position: relative; background: #f0f0f0;">
<div style="position: absolute; top: 50%; left: 50%; transform: translate(-50%, -50%); text-align: center;">
<p id="status_{viewer_id}" style="color: #666;">Loading 3Dmol.js...</p>
</div>
</div>
</div>
<script src="https://unpkg.com/[email protected]/build/3Dmol-min.js"></script>
<script>
// Global variables for this viewer instance
window.viewer_{viewer_id} = null;
window.pdbData_{viewer_id} = `{pdb_data}`;
window.predictedEpitopes_{viewer_id} = {json.dumps(epitope_residues)};
window.predictions_{viewer_id} = {json.dumps(predictions)};
window.topKRegions_{viewer_id} = {json.dumps(processed_regions)};
// Wait for 3Dmol to be available with timeout
function wait3Dmol_{viewer_id}(attempts = 0) {{
if (typeof $3Dmol !== 'undefined') {{
console.log('3Dmol.js loaded successfully for {viewer_id}');
document.getElementById('status_{viewer_id}').textContent = 'Initializing 3D viewer...';
setTimeout(() => initializeViewer_{viewer_id}(), 100);
}} else if (attempts < 50) {{ // 5 second timeout
console.log(`Waiting for 3Dmol.js... attempt ${{attempts + 1}}`);
setTimeout(() => wait3Dmol_{viewer_id}(attempts + 1), 100);
}} else {{
console.error('Failed to load 3Dmol.js after 5 seconds');
document.getElementById('status_{viewer_id}').textContent = 'Failed to load 3Dmol.js. Please refresh the page.';
document.getElementById('status_{viewer_id}').style.color = 'red';
}}
}}
function initializeViewer_{viewer_id}() {{
try {{
const element = document.getElementById('{viewer_id}');
if (!element) {{
console.error('Viewer element not found: {viewer_id}');
return;
}}
document.getElementById('status_{viewer_id}').textContent = 'Creating viewer...';
window.viewer_{viewer_id} = $3Dmol.createViewer(element, {{
defaultcolors: $3Dmol.rasmolElementColors
}});
document.getElementById('status_{viewer_id}').textContent = 'Loading structure...';
window.viewer_{viewer_id}.addModel(window.pdbData_{viewer_id}, 'pdb');
// Hide status message
const statusEl = document.getElementById('status_{viewer_id}');
if (statusEl) statusEl.style.display = 'none';
updateVisualization_{viewer_id}();
// Initialize sphere checkboxes if data is available
if (window.topKRegions_{viewer_id} && window.topKRegions_{viewer_id}.length > 0) {{
generateSphereCheckboxes_{viewer_id}();
}}
console.log('3D viewer initialized successfully for {viewer_id}');
}} catch (error) {{
console.error('Error initializing 3D viewer:', error);
const statusEl = document.getElementById('status_{viewer_id}');
if (statusEl) {{
statusEl.textContent = 'Error loading 3D viewer: ' + error.message;
statusEl.style.color = 'red';
}}
}}
}}
function updateVisualization_{viewer_id}() {{
if (!window.viewer_{viewer_id}) return;
try {{
const mode = document.getElementById('vizMode_{viewer_id}').value;
const style = document.getElementById('vizStyle_{viewer_id}').value;
const showSpheres = document.getElementById('showSpheres_{viewer_id}').checked;
// Clear everything
window.viewer_{viewer_id}.removeAllShapes();
window.viewer_{viewer_id}.removeAllSurfaces();
window.viewer_{viewer_id}.setStyle({{}}, {{}});
// Base style
const baseStyle = {{}};
if (style === 'surface') {{
baseStyle['cartoon'] = {{ hidden: true }};
}} else {{
baseStyle[style] = {{ color: '#e6e6f7' }};
}}
window.viewer_{viewer_id}.setStyle({{}}, baseStyle);
if (mode === 'prediction') {{
// Highlight predicted epitopes
if (window.predictedEpitopes_{viewer_id}.length > 0 && style !== 'surface') {{
const epitopeStyle = {{}};
epitopeStyle[style] = {{ color: '#9C6ADE' }};
window.viewer_{viewer_id}.setStyle({{ resi: window.predictedEpitopes_{viewer_id} }}, epitopeStyle);
}}
// Add surface for epitopes if surface mode
if (style === 'surface') {{
window.viewer_{viewer_id}.addSurface($3Dmol.SurfaceType.VDW, {{
opacity: 0.8,
color: '#e6e6f7'
}});
if (window.predictedEpitopes_{viewer_id}.length > 0) {{
window.viewer_{viewer_id}.addSurface($3Dmol.SurfaceType.VDW, {{
opacity: 1.0,
color: '#9C6ADE'
}}, {{ resi: window.predictedEpitopes_{viewer_id} }});
}}
}}
}} else if (mode === 'probability') {{
// Color by probability scores
if (window.predictions_{viewer_id} && Object.keys(window.predictions_{viewer_id}).length > 0) {{
const allProbs = Object.values(window.predictions_{viewer_id}).filter(p => p !== undefined);
const minProb = Math.min(...allProbs);
const maxProb = Math.max(...allProbs);
Object.entries(window.predictions_{viewer_id}).forEach(([resnum, score]) => {{
const normalizedProb = maxProb > minProb ? (score - minProb) / (maxProb - minProb) : 0.5;
const color = interpolateColor('#E6F3FF', '#DC143C', normalizedProb);
const probStyle = {{}};
if (style !== 'surface') {{
probStyle[style] = {{ color: color }};
window.viewer_{viewer_id}.setStyle({{ resi: parseInt(resnum) }}, probStyle);
}}
}});
if (style === 'surface') {{
window.viewer_{viewer_id}.addSurface($3Dmol.SurfaceType.VDW, {{
opacity: 0.8,
color: '#e6e6f7'
}});
Object.entries(window.predictions_{viewer_id}).forEach(([resnum, score]) => {{
const normalizedProb = maxProb > minProb ? (score - minProb) / (maxProb - minProb) : 0.5;
const color = interpolateColor('#E6F3FF', '#DC143C', normalizedProb);
window.viewer_{viewer_id}.addSurface($3Dmol.SurfaceType.VDW, {{
opacity: 1.0,
color: color
}}, {{ resi: parseInt(resnum) }});
}});
}}
}}
}} else if (mode === 'regions') {{
// Color top-k regions
const colors = ['#FF6B6B', '#96CEB4', '#4ECDC4', '#45B7D1', '#FFEAA7', '#DDA0DD', '#87CEEB'];
if (window.topKRegions_{viewer_id} && window.topKRegions_{viewer_id}.length > 0) {{
window.topKRegions_{viewer_id}.forEach((region, index) => {{
const color = colors[index % colors.length];
const regionStyle = {{}};
if (style !== 'surface') {{
regionStyle[style] = {{ color: color }};
window.viewer_{viewer_id}.setStyle({{ resi: region.covered_residues }}, regionStyle);
}}
}});
if (style === 'surface') {{
window.viewer_{viewer_id}.addSurface($3Dmol.SurfaceType.VDW, {{
opacity: 0.8,
color: '#e6e6f7'
}});
window.topKRegions_{viewer_id}.forEach((region, index) => {{
const color = colors[index % colors.length];
window.viewer_{viewer_id}.addSurface($3Dmol.SurfaceType.VDW, {{
opacity: 1.0,
color: color
}}, {{ resi: region.covered_residues }});
}});
}}
}}
}}
// Add spheres if requested
if (showSpheres && window.topKRegions_{viewer_id} && window.topKRegions_{viewer_id}.length > 0) {{
const colors = ['#FF6B6B', '#96CEB4', '#4ECDC4', '#45B7D1', '#FFEAA7', '#DDA0DD', '#87CEEB'];
const sphereCount = document.getElementById('sphereCount_{viewer_id}').value;
// Determine which spheres to show
let spheresToShow = [];
if (sphereCount === 'custom') {{
const selectedIndices = getSelectedSphereIndices_{viewer_id}();
spheresToShow = selectedIndices.map(idx => ({{ region: window.topKRegions_{viewer_id}[idx], index: idx }}));
}} else {{
let numSpheres = sphereCount === 'all' ? window.topKRegions_{viewer_id}.length : parseInt(sphereCount);
numSpheres = Math.min(numSpheres, window.topKRegions_{viewer_id}.length);
spheresToShow = window.topKRegions_{viewer_id}.slice(0, numSpheres).map((region, index) => ({{ region, index }}));
}}
spheresToShow.forEach(({{ region, index }}) => {{
const color = colors[index % colors.length];
const centerResidues = window.viewer_{viewer_id}.getModel(0).selectedAtoms({{
resi: region.center_residue,
atom: 'CA'
}});
if (centerResidues.length > 0) {{
const centerAtom = centerResidues[0];
const centerCoords = {{ x: centerAtom.x, y: centerAtom.y, z: centerAtom.z }};
// Add wireframe sphere
window.viewer_{viewer_id}.addSphere({{
center: centerCoords,
radius: region.radius,
color: color,
wireframe: true,
linewidth: 2.0
}});
// Add center point
window.viewer_{viewer_id}.addSphere({{
center: centerCoords,
radius: 0.7,
color: '#FFD700',
wireframe: false
}});
}}
}});
}}
window.viewer_{viewer_id}.zoomTo();
window.viewer_{viewer_id}.render();
}} catch (error) {{
console.error('Error updating visualization:', error);
}}
}}
// Color interpolation helper functions
function interpolateColor(color1, color2, factor) {{
const c1 = hexToRgb(color1);
const c2 = hexToRgb(color2);
const r = Math.round(c1.r + factor * (c2.r - c1.r));
const g = Math.round(c1.g + factor * (c2.g - c1.g));
const b = Math.round(c1.b + factor * (c2.b - c1.b));
return rgbToHex(r, g, b);
}}
function hexToRgb(hex) {{
const result = /^#?([a-f\d]{{2}})([a-f\d]{{2}})([a-f\d]{{2}})$/i.exec(hex);
return result ? {{
r: parseInt(result[1], 16),
g: parseInt(result[2], 16),
b: parseInt(result[3], 16)
}} : null;
}}
function rgbToHex(r, g, b) {{
return "#" + ((1 << 24) + (r << 16) + (g << 8) + b).toString(16).slice(1);
}}
function resetView_{viewer_id}() {{
if (window.viewer_{viewer_id}) {{
window.viewer_{viewer_id}.zoomTo();
window.viewer_{viewer_id}.render();
}}
}}
function saveImage_{viewer_id}() {{
if (window.viewer_{viewer_id}) {{
window.viewer_{viewer_id}.pngURI(function(uri) {{
const link = document.createElement('a');
link.href = uri;
link.download = '{protein_id}_structure.png';
link.click();
}});
}}
}}
// Handle sphere count selection change
function handleSphereCountChange_{viewer_id}() {{
const sphereCount = document.getElementById('sphereCount_{viewer_id}').value;
const customSelectionDiv = document.getElementById('customSphereSelection_{viewer_id}');
if (sphereCount === 'custom') {{
customSelectionDiv.style.display = 'block';
generateSphereCheckboxes_{viewer_id}();
}} else {{
customSelectionDiv.style.display = 'none';
}}
updateVisualization_{viewer_id}();
}}
// Generate sphere checkboxes for custom selection
function generateSphereCheckboxes_{viewer_id}() {{
if (!window.topKRegions_{viewer_id} || window.topKRegions_{viewer_id}.length === 0) {{
return;
}}
const regions = window.topKRegions_{viewer_id};
const container = document.getElementById('sphereCheckboxes_{viewer_id}');
container.innerHTML = '';
regions.forEach((region, index) => {{
const sphereNum = index + 1;
const checkboxId = `sphere_{{sphereNum}}_{viewer_id}`;
const colors = ['#FF6B6B', '#96CEB4', '#4ECDC4', '#45B7D1', '#FFEAA7', '#DDA0DD', '#87CEEB'];
const sphereColor = colors[index % colors.length];
const checkboxContainer = document.createElement('div');
checkboxContainer.style.cssText = `
display: flex;
align-items: center;
padding: 5px 10px;
border: 1px solid #ddd;
border-radius: 4px;
background: white;
cursor: pointer;
user-select: none;
`;
checkboxContainer.setAttribute('data-sphere', sphereNum);
const checkbox = document.createElement('input');
checkbox.type = 'checkbox';
checkbox.id = checkboxId;
checkbox.checked = sphereNum <= 5; // Default: show first 5
checkbox.style.marginRight = '5px';
const colorBox = document.createElement('div');
colorBox.style.cssText = `
width: 16px;
height: 16px;
background-color: ${{sphereColor}};
border: 1px solid #333;
border-radius: 2px;
margin-right: 5px;
`;
const label = document.createElement('label');
label.setAttribute('for', checkboxId);
label.textContent = `Sphere ${{sphereNum}} (R${{region.center_residue}})`;
label.style.cursor = 'pointer';
label.style.fontSize = '14px';
checkboxContainer.appendChild(checkbox);
checkboxContainer.appendChild(colorBox);
checkboxContainer.appendChild(label);
container.appendChild(checkboxContainer);
// Add click handler
checkboxContainer.addEventListener('click', function(e) {{
if (e.target.type !== 'checkbox') {{
checkbox.checked = !checkbox.checked;
}}
if (checkbox.checked) {{
checkboxContainer.style.backgroundColor = '#f0f8ff';
checkboxContainer.style.borderColor = '#4a90e2';
}} else {{
checkboxContainer.style.backgroundColor = 'white';
checkboxContainer.style.borderColor = '#ddd';
}}
updateVisualization_{viewer_id}();
}});
// Initialize visual state
if (checkbox.checked) {{
checkboxContainer.style.backgroundColor = '#f0f8ff';
checkboxContainer.style.borderColor = '#4a90e2';
}}
}});
}}
// Get selected sphere indices for custom mode
function getSelectedSphereIndices_{viewer_id}() {{
const selected = [];
const checkboxes = document.querySelectorAll('#sphereCheckboxes_{viewer_id} input[type="checkbox"]:checked');
checkboxes.forEach(function(checkbox) {{
// Get sphere number from the data-sphere attribute of the container
const container = checkbox.closest('[data-sphere]');
if (container) {{
const sphereNum = parseInt(container.getAttribute('data-sphere'));
selected.push(sphereNum - 1); // Convert to 0-based index
}}
}});
return selected;
}}
// Start initialization
wait3Dmol_{viewer_id}();
</script>
"""
return html_content
def predict_epitopes(pdb_id: str, pdb_file, chain_id: str, radius: float, k: int,
encoder: str, device_config: str, use_threshold: bool, threshold: float,
auto_cleanup: bool, progress: gr.Progress = None) -> Tuple[str, str, str, str, str, str]:
"""
Main prediction function that handles the epitope prediction workflow
"""
try:
# Input validation
if not pdb_file and not pdb_id:
return "Error: Please provide either a PDB ID or upload a PDB file", "", "", "", "", ""
if pdb_id and not validate_pdb_id(pdb_id):
return "Error: PDB ID must be exactly 4 characters (letters and numbers)", "", "", "", "", ""
if not validate_chain_id(chain_id):
return "Error: Chain ID must be exactly 1 character", "", "", "", "", ""
# Update progress
if progress:
progress(0.1, desc="Initializing prediction...")
# Process device configuration
device_id = -1 if device_config == "CPU Only" else int(device_config.split(" ")[1])
use_gpu = device_id >= 0
# Load protein structure
if progress:
progress(0.2, desc="Loading protein structure...")
antigen_chain = None
temp_file_path = None
try:
if pdb_file:
# Handle uploaded file
if progress:
progress(0.25, desc="Processing uploaded PDB file...")
# Debug: print type and attributes of pdb_file
print(f"๐ Debug: pdb_file type = {type(pdb_file)}")
print(f"๐ Debug: pdb_file attributes = {dir(pdb_file)}")
# Extract PDB ID from filename if not provided
if not pdb_id:
if hasattr(pdb_file, 'name'):
pdb_id = Path(pdb_file.name).stem.split('_')[0][:4]
else:
pdb_id = "UNKN" # Default fallback
# Save uploaded file to data/pdb/ directory with proper naming
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{pdb_id}_{chain_id}_{timestamp}.pdb"
temp_file_path = PDB_DATA_DIR / filename
# Properly read and write the uploaded file
try:
if hasattr(pdb_file, 'name') and os.path.isfile(pdb_file.name):
# pdb_file is a file object with .name attribute
print(f"๐ Processing file object: {pdb_file.name}")
with open(pdb_file.name, "rb") as src:
with open(temp_file_path, "wb") as dst:
dst.write(src.read())
elif hasattr(pdb_file, 'read'):
# pdb_file is a file-like object
print(f"๐ Processing file-like object")
with open(temp_file_path, "wb") as f:
f.write(pdb_file.read())
else:
# pdb_file is a string (file path)
print(f"๐ Processing file path: {pdb_file}")
with open(str(pdb_file), "rb") as src:
with open(temp_file_path, "wb") as dst:
dst.write(src.read())
print(f"โ
PDB file saved to: {temp_file_path}")
except Exception as file_error:
print(f"โ Error processing uploaded file: {file_error}")
return f"Error processing uploaded file: {str(file_error)}", "", "", "", "", ""
antigen_chain = AntigenChain.from_pdb(
path=str(temp_file_path),
chain_id=chain_id,
id=pdb_id
)
else:
# Load from PDB ID
if progress:
progress(0.25, desc=f"Downloading PDB structure {pdb_id}...")
antigen_chain = AntigenChain.from_pdb(
chain_id=chain_id,
id=pdb_id
)
except Exception as e:
return f"Error loading protein structure: {str(e)}", "", "", "", "", ""
if antigen_chain is None:
return "Error: Failed to load protein structure", "", "", "", "", ""
# Run prediction
if progress:
progress(0.4, desc="Running epitope prediction...")
try:
# Use threshold only if checkbox is checked
final_threshold = threshold if use_threshold else None
predict_results = antigen_chain.predict(
model_path=DEFAULT_MODEL_PATH,
device_id=device_id,
radius=radius,
k=k,
threshold=final_threshold,
verbose=True,
encoder=encoder,
use_gpu=use_gpu,
auto_cleanup=auto_cleanup
)
except Exception as e:
error_msg = f"Error during prediction: {str(e)}"
print(f"Prediction error: {error_msg}")
import traceback
traceback.print_exc()
return error_msg, "", "", "", "", ""
if progress:
progress(0.8, desc="Processing results...")
# Process results
if not predict_results:
return "Error: No prediction results generated", "", "", "", "", ""
# Extract prediction data
predicted_epitopes = predict_results.get("predicted_epitopes", [])
predictions = predict_results.get("predictions", {})
top_k_centers = predict_results.get("top_k_centers", [])
top_k_region_residues = predict_results.get("top_k_region_residues", [])
top_k_regions = predict_results.get("top_k_regions", [])
# Calculate summary statistics
protein_length = len(antigen_chain.sequence)
epitope_count = len(predicted_epitopes)
region_count = len(top_k_regions)
coverage_rate = (len(top_k_region_residues) / protein_length) * 100 if protein_length > 0 else 0
# Create summary text
summary_text = f"""
## Prediction Results for {pdb_id}_{chain_id}
### Protein Information
- **PDB ID**: {pdb_id}
- **Chain**: {chain_id}
- **Length**: {protein_length} residues
- **Sequence**: <div style="word-wrap: break-word; word-break: break-all; white-space: pre-wrap; max-width: 100%; font-family: monospace; background: #f5f5f5; padding: 8px; border-radius: 4px; margin: 5px 0; display: inline-block;">{antigen_chain.sequence}</div>
### Prediction Summary
- **Predicted Epitopes**: {epitope_count}
- **Top-k Regions**: {region_count}
- **Coverage Rate**: {coverage_rate:.1f}%
### Top-k Region Centers
{', '.join(map(str, top_k_centers))}
### Predicted Epitope Residues
{', '.join(map(str, predicted_epitopes))}
### Binding Region Residues (Top-k Union)
{', '.join(map(str, top_k_region_residues))}
"""
# Create epitope list text with residue names
epitope_text = f"Predicted Epitope Residues ({len(predicted_epitopes)}):\n"
epitope_lines = []
for res in predicted_epitopes:
# Get residue index from residue number
if res in antigen_chain.resnum_to_index:
res_idx = antigen_chain.resnum_to_index[res]
res_name = antigen_chain.sequence[res_idx]
epitope_lines.append(f"Residue {res} ({res_name})")
else:
epitope_lines.append(f"Residue {res}")
epitope_text += "\n".join(epitope_lines)
# Create binding region text with residue names
binding_text = f"Binding Region Residues ({len(top_k_region_residues)}):\n"
binding_lines = []
for res in top_k_region_residues:
# Get residue index from residue number
if res in antigen_chain.resnum_to_index:
res_idx = antigen_chain.resnum_to_index[res]
res_name = antigen_chain.sequence[res_idx]
binding_lines.append(f"Residue {res} ({res_name})")
else:
binding_lines.append(f"Residue {res}")
binding_text += "\n".join(binding_lines)
# Create downloadable files
if progress:
progress(0.9, desc="Preparing download files...")
# JSON file
json_data = {
"protein_info": {
"id": pdb_id,
"chain_id": chain_id,
"length": protein_length,
"sequence": antigen_chain.sequence
},
"prediction": {
"predicted_epitopes": predicted_epitopes,
"predictions": predictions,
"top_k_centers": top_k_centers,
"top_k_region_residues": top_k_region_residues,
"top_k_regions": [
{
"center_idx": region.get('center_idx', 0),
"graph_pred": region.get('graph_pred', 0),
"covered_indices": region.get('covered_indices', [])
}
for region in top_k_regions
],
"coverage_rate": coverage_rate,
"mean_region_value": 0 # No longer calculated
},
"parameters": {
"radius": radius,
"k": k,
"encoder": encoder,
"device_config": device_config,
"use_threshold": use_threshold,
"threshold": final_threshold,
"auto_cleanup": auto_cleanup
}
}
# Save JSON file
json_file_path = tempfile.mktemp(suffix=".json")
with open(json_file_path, "w") as f:
json.dump(json_data, f, indent=2)
# CSV file
csv_data = []
for i, residue_num in enumerate(antigen_chain.residue_index):
residue_num = int(residue_num)
csv_data.append({
"Residue_Number": residue_num,
"Residue_Type": antigen_chain.sequence[i],
"Prediction_Probability": predictions.get(residue_num, 0.0),
"Is_Predicted_Epitope": 1 if residue_num in predicted_epitopes else 0,
"Is_In_TopK_Regions": 1 if residue_num in top_k_region_residues else 0
})
csv_df = pd.DataFrame(csv_data)
csv_file_path = tempfile.mktemp(suffix=".csv")
csv_df.to_csv(csv_file_path, index=False)
# Create 3D visualization
if progress:
progress(0.95, desc="Creating 3D visualization...")
# Generate PDB string for visualization HTML file
html_file_path = None
try:
pdb_str = generate_pdb_string(antigen_chain)
html_content = create_pdb_visualization_html(
pdb_str, predicted_epitopes, predictions, f"{pdb_id}_{chain_id}", top_k_regions
)
# Save HTML file to data directory for download
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
html_filename = f"{pdb_id}_{chain_id}_visualization_{timestamp}.html"
html_file_path = PDB_DATA_DIR / html_filename
with open(html_file_path, "w", encoding='utf-8') as f:
f.write(html_content)
print(f"โ
3D visualization HTML saved to: {html_file_path}")
except Exception as e:
html_file_path = None
print(f"Warning: Could not create 3D visualization: {str(e)}")
# Clean up temporary files if auto_cleanup is enabled
if auto_cleanup and temp_file_path and os.path.exists(temp_file_path):
os.remove(temp_file_path)
print(f"๐งน Cleaned up temporary file: {temp_file_path}")
elif temp_file_path and os.path.exists(temp_file_path):
print(f"๐ PDB file retained at: {temp_file_path}")
if progress:
progress(1.0, desc="Prediction completed!")
# Return all results including HTML file path for download
return (
summary_text,
epitope_text,
binding_text,
str(html_file_path) if html_file_path else None, # HTML file moved to 4th position
json_file_path,
csv_file_path
)
except Exception as e:
import traceback
error_msg = f"Error: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
return error_msg, "", "", "", "", ""
def generate_pdb_string(antigen_chain) -> str:
"""Generate PDB string for 3D visualization"""
from esm.utils import residue_constants as RC
pdb_str = "MODEL 1\n"
atom_num = 1
for res_idx in range(len(antigen_chain.sequence)):
one_letter = antigen_chain.sequence[res_idx]
resname = antigen_chain.convert_letter_1to3(one_letter)
resnum = antigen_chain.residue_index[res_idx]
mask = antigen_chain.atom37_mask[res_idx]
coords = antigen_chain.atom37_positions[res_idx][mask]
atoms = [name for name, exists in zip(RC.atom_types, mask) if exists]
for atom_name, coord in zip(atoms, coords):
x, y, z = coord
pdb_str += (f"ATOM {atom_num:5d} {atom_name:<3s} {resname:>3s} {antigen_chain.chain_id:1s}{resnum:4d}"
f" {x:8.3f}{y:8.3f}{z:8.3f} 1.00 0.00\n")
atom_num += 1
pdb_str += "ENDMDL\n"
return pdb_str
def create_interface():
"""Create the Gradio interface"""
with gr.Blocks(css="""
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
.header {
text-align: center;
margin-bottom: 30px;
padding: 20px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: 10px;
}
.header h1 {
font-size: 2.5em;
margin-bottom: 10px;
}
.form-row {
display: flex;
gap: 20px;
align-items: end;
}
.form-row > * {
flex: 1;
}
.section {
margin: 20px 0;
padding: 15px;
background: #f8f9fa;
border-radius: 8px;
border-left: 4px solid #007bff;
}
.section h2 {
color: #333;
margin-bottom: 15px;
}
.results-section {
margin-top: 30px;
padding: 20px;
background: #f0f8ff;
border-radius: 8px;
border: 1px solid #e0e8f0;
}
.download-section {
margin-top: 20px;
padding: 15px;
background: #f9f9f9;
border-radius: 8px;
}
.download-section h3 {
color: #333;
margin-bottom: 10px;
}
""") as interface:
# Header
gr.HTML("""
<div class="header">
<h1>๐งฌ B-cell Epitope Prediction Server</h1>
<p>Predict epitopes using the ReCEP model</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<div class='section'><h2>๐ Input Protein Structure</h2></div>")
input_method = gr.Radio(
choices=["PDB ID", "Upload PDB File"],
value="PDB ID",
label="Input Method"
)
pdb_id = gr.Textbox(
label="PDB ID",
placeholder="e.g., 5I9Q",
max_lines=1,
visible=True
)
pdb_file = gr.File(
label="Upload PDB File",
file_types=[".pdb", ".ent"],
visible=False
)
chain_id = gr.Textbox(
label="Chain ID",
value="A",
max_lines=1
)
with gr.Accordion("๐ง Advanced Parameters", open=False):
radius = gr.Slider(
label="Radius (ร
)",
minimum=1.0,
maximum=50.0,
step=0.1,
value=19.0
)
k = gr.Slider(
label="Top-k Regions",
minimum=1,
maximum=20,
step=1,
value=7
)
encoder = gr.Dropdown(
label="Encoder",
choices=["esmc", "esm2"],
value="esmc"
)
device_config = gr.Dropdown(
label="Device Configuration",
choices=["CPU Only", "GPU 0", "GPU 1", "GPU 2", "GPU 3"],
value="CPU Only"
)
use_threshold = gr.Checkbox(
label="Use Custom Threshold",
value=False
)
threshold = gr.Number(
label="Threshold Value",
value=0.366,
visible=False
)
auto_cleanup = gr.Checkbox(
label="Auto-cleanup Generated Data",
value=True
)
predict_btn = gr.Button("๐งฎ Predict Epitopes", variant="primary", size="lg")
with gr.Column(scale=2):
gr.HTML("<div class='section'><h2>๐ Prediction Results</h2></div>")
# 3D Visualization download (moved to top)
gr.HTML("<div style='margin: 15px 0; padding: 10px; background: #f0f8ff; border-left: 4px solid #4a90e2; border-radius: 5px;'><h3 style='margin: 0 0 8px 0; color: #333;'>๐งฌ 3D Visualization</h3><p style='margin: 0; color: #666;'>You can download the HTML to visualize the prediction results and the spheres used.</p></div>")
html_download = gr.File(
label="Download Interactive 3D Visualization HTML",
visible=True
)
results_text = gr.Markdown(label="Prediction Summary", visible=True)
with gr.Row():
epitope_list = gr.Textbox(
label="Predicted Epitope Residues",
max_lines=10,
interactive=False
)
binding_regions = gr.Textbox(
label="Binding Region Residues",
max_lines=10,
interactive=False
)
gr.HTML("<div class='download-section'><h3>๐ฅ Download Data Results</h3></div>")
with gr.Row():
json_download = gr.File(
label="JSON Results",
visible=True
)
csv_download = gr.File(
label="CSV Results",
visible=True
)
def toggle_input_method(method):
return (gr.update(visible=method == "PDB ID"),
gr.update(visible=method == "Upload PDB File"))
def toggle_threshold(use_threshold):
return gr.update(visible=use_threshold)
input_method.change(toggle_input_method, inputs=[input_method], outputs=[pdb_id, pdb_file])
use_threshold.change(toggle_threshold, inputs=[use_threshold], outputs=[threshold])
predict_btn.click(
predict_epitopes,
inputs=[
pdb_id, pdb_file, chain_id, radius, k, encoder,
device_config, use_threshold, threshold, auto_cleanup
],
outputs=[
results_text, epitope_list, binding_regions,
html_download, json_download, csv_download
],
show_progress=True
)
gr.HTML("""
<div style="text-align: center; margin-top: 30px; padding: 20px; background: #f0f0f0; border-radius: 10px;">
<p>ยฉ 2024 B-cell Epitope Prediction Server | Powered by ReCEP model</p>
<p><strong>Features:</strong> PDB ID/File support โข 3D visualization โข Multiple export formats</p>
</div>
""")
return interface
if __name__ == "__main__":
# Create and launch the interface
try:
interface = create_interface()
# Check if running on Hugging Face Spaces
is_spaces = os.getenv("SPACE_ID") is not None
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=is_spaces, # Use share=True on Spaces, False locally
show_error=True,
max_threads=4 if is_spaces else 8
)
except Exception as e:
print(f"Error launching application: {e}")
print("Please ensure all dependencies are installed correctly.")
import traceback
traceback.print_exc()
|