File size: 51,076 Bytes
e611d1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 |
import os
import h5py
import torch
import numpy as np
import json
import random
from pathlib import Path
from multiprocessing import Pool
from typing import List, Tuple, Dict, Optional, Union
from torch_geometric.data import Data, Dataset, Batch
from torch_geometric.loader import DataLoader
from tqdm import tqdm
import pickle
from ..utils.loading import load_epitopes_csv, load_data_split
from ..utils.constants import BASE_DIR
from .utils import create_graph_data, create_graph_data_full
def apply_undersample(data_list: List, undersample_param: Union[int, float], seed: int = 42, verbose: bool = True):
"""
Apply undersampling to a data list.
Args:
data_list: List of data samples
undersample_param: If int, sample that many samples; if float (0-1), sample that fraction of data
seed: Random seed for reproducibility
verbose: Whether to print sampling information
Returns:
Undersampled data list
"""
if undersample_param is None:
return data_list
original_size = len(data_list)
if isinstance(undersample_param, float):
# Sample a fraction of the data
if not (0 < undersample_param <= 1.0):
raise ValueError(f"Float undersample must be between 0 and 1, got {undersample_param}")
target_size = int(len(data_list) * undersample_param)
elif isinstance(undersample_param, int):
# Sample a specific number of samples
if undersample_param <= 0:
raise ValueError(f"Int undersample must be positive, got {undersample_param}")
target_size = min(undersample_param, len(data_list))
else:
raise ValueError(f"Undersample must be int, float, or None, got {type(undersample_param)}")
if target_size < len(data_list):
# Set random seed for reproducibility
random.seed(seed)
sampled_data = random.sample(data_list, target_size)
if verbose:
print(f"Applied undersampling: {original_size} -> {target_size} samples")
return sampled_data
elif verbose:
print(f"No undersampling applied: requested {target_size}, available {original_size}")
return data_list
class AntigenDataset(Dataset):
"""
Dataset for antigen chains.
Each data point represents a complete protein as a graph, with nodes being residues
and edges based on spatial distance (< 18 Å).
"""
def __init__(
self,
data_split: str = "train",
radius: float = 18,
threshold: float = 0.25,
num_posenc: int = 16,
num_rbf: int = 16,
undersample: Union[int, float, None] = None,
cache_dir: Optional[str] = None,
force_rebuild: bool = False,
verbose: bool = True,
seed: int = 42,
encoder: str = "esmc"
):
"""
Initialize the antigen dataset.
Args:
data_split: Data split name ('train', 'val', 'test')
radius: Distance threshold for edge creation (Å)
threshold: SASA threshold for surface residues (not used in full protein)
num_posenc: Number of positional encoding features
num_rbf: Number of RBF features
undersample: Undersample parameter (int for count, float for ratio)
cache_dir: Directory to cache processed data
force_rebuild: Whether to force rebuild the dataset
verbose: Whether to print progress information
seed: Random seed for reproducibility
encoder: Encoder type ('esmc' or 'esm2')
"""
self.data_split = data_split
self.radius = radius
self.threshold = threshold
self.num_posenc = num_posenc
self.num_rbf = num_rbf
self.undersample = undersample
self.verbose = verbose
self.seed = seed
self.encoder = encoder
# Set cache directory
if cache_dir is None:
cache_dir = Path(f"{BASE_DIR}/data/full_region_cache/antigen_r{radius}")
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(parents=True, exist_ok=True)
# Cache file for this configuration
self.cache_file = self.cache_dir / f"{data_split}_antigen_dataset.h5"
# Load data splits and epitope information
self.antigens = load_data_split(data_split, verbose=verbose)
_, _, self.epitope_dict = load_epitopes_csv()
# Initialize data list
self.data_list = []
# Load or build dataset
if self.cache_file.exists() and not force_rebuild:
if verbose:
print(f"Loading cached antigen dataset from {self.cache_file}")
self._load_cache()
else:
if verbose:
print(f"Building antigen dataset for {data_split} split...")
self._build_dataset()
self._save_cache()
super().__init__()
def _load_protein_data(self, pdb_id: str, chain_id: str) -> Optional[Dict]:
"""
Load precomputed protein data from files.
Args:
pdb_id: PDB ID
chain_id: Chain ID
Returns:
Dictionary containing all protein data or None if loading fails
"""
try:
protein_key = f"{pdb_id}_{chain_id}"
# Load embeddings
embedding_file = Path(BASE_DIR) / "data" / "embeddings" / self.encoder / f"{protein_key}.h5"
if not embedding_file.exists():
if self.verbose:
print(f"Embedding file not found: {embedding_file}")
return None
with h5py.File(embedding_file, "r") as h5f:
embeddings = h5f["embedding"][:]
# Load backbone atoms
coords_file = Path(BASE_DIR) / "data" / "coords" / f"{protein_key}.npy"
if not coords_file.exists():
if self.verbose:
print(f"Coords file not found: {coords_file}")
return None
backbone_atoms = np.load(coords_file)
# Load RSA values
rsa_file = Path(BASE_DIR) / "data" / "rsa" / f"{protein_key}.npy"
if not rsa_file.exists():
if self.verbose:
print(f"RSA file not found: {rsa_file}")
return None
rsa_values = np.load(rsa_file)
# Load epitope data from epitope_dict
binary_labels = self.epitope_dict.get(protein_key, [])
# Create epitope indices from binary labels
epitope_indices = []
for idx, is_epitope in enumerate(binary_labels):
if is_epitope == 1:
epitope_indices.append(idx)
return {
'embeddings': embeddings,
'backbone_atoms': backbone_atoms,
'rsa_values': rsa_values,
'epitope_indices': epitope_indices,
}
except Exception as e:
if self.verbose:
print(f"Error loading protein data for {pdb_id}_{chain_id}: {str(e)}")
return None
def _build_dataset(self):
"""Build the dataset from precomputed data files."""
failed_proteins = []
for pdb_id, chain_id in tqdm(self.antigens, desc=f"Processing {self.data_split} antigens",
disable=not self.verbose):
try:
# Load precomputed data
protein_data = self._load_protein_data(pdb_id, chain_id)
if protein_data is None:
failed_proteins.append(f"{pdb_id}_{chain_id}")
continue
embeddings = protein_data['embeddings']
backbone_atoms = protein_data['backbone_atoms']
rsa_values = protein_data['rsa_values']
epitope_indices = protein_data['epitope_indices']
# Create graph data for the full protein
graph_data = create_graph_data_full(
embeddings=embeddings,
backbone_atoms=backbone_atoms,
rsa_values=rsa_values,
epitope_indices=epitope_indices,
pdb_id=pdb_id,
chain_id=chain_id,
num_rbf=self.num_rbf,
num_posenc=self.num_posenc,
radius=self.radius,
verbose=self.verbose
)
if graph_data is not None:
self.data_list.append(graph_data)
else:
failed_proteins.append(f"{pdb_id}_{chain_id}")
except Exception as e:
failed_proteins.append(f"{pdb_id}_{chain_id}")
if self.verbose:
print(f"Error processing {pdb_id}_{chain_id}: {str(e)}")
if failed_proteins and self.verbose:
print(f"Failed to process {len(failed_proteins)} proteins: {failed_proteins[:5]}...")
# Apply undersampling if specified
if self.undersample is not None:
self.data_list = apply_undersample(
self.data_list,
self.undersample,
seed=self.seed,
verbose=self.verbose
)
if self.verbose:
print(f"Successfully created {len(self.data_list)} protein graphs")
def _save_cache(self):
"""Save processed dataset to cache."""
try:
self._save_cache_hdf5()
if self.verbose:
print(f"Dataset cached to {self.cache_file}")
except Exception as e:
if self.verbose:
print(f"Failed to save cache: {str(e)}")
def _load_cache(self):
"""Load processed dataset from cache."""
try:
self._load_cache_hdf5()
if self.verbose:
print(f"Loaded {len(self.data_list)} samples from cache")
except Exception as e:
if self.verbose:
print(f"Failed to load cache: {str(e)}")
self.data_list = []
def _save_cache_hdf5(self):
"""Save dataset using HDF5 format."""
with h5py.File(self.cache_file, 'w') as f:
# Save metadata
f.attrs['num_samples'] = len(self.data_list)
f.attrs['radius'] = self.radius
f.attrs['threshold'] = self.threshold
f.attrs['data_split'] = self.data_split
f.attrs['encoder'] = self.encoder
f.attrs['dataset_type'] = 'antigen_full'
# Save each protein as a separate group
for i, data in enumerate(tqdm(self.data_list, desc="Saving dataset...", disable=not self.verbose)):
group = f.create_group(f'protein_{i}')
# Save tensors as datasets with compression
group.create_dataset('x', data=data.x.numpy(), compression='gzip', compression_opts=6)
group.create_dataset('pos', data=data.pos.numpy(), compression='gzip', compression_opts=6)
group.create_dataset('rsa', data=data.rsa.numpy(), compression='gzip', compression_opts=6)
group.create_dataset('edge_index', data=data.edge_index.numpy(), compression='gzip', compression_opts=6)
group.create_dataset('edge_attr', data=data.edge_attr.numpy(), compression='gzip', compression_opts=6)
group.create_dataset('y_node', data=data.y_node.numpy(), compression='gzip', compression_opts=6)
# Save scalar and list attributes
group.attrs['pdb_id'] = data.pdb_id.encode('utf-8')
group.attrs['chain_id'] = data.chain_id.encode('utf-8')
group.attrs['num_nodes'] = data.num_nodes
group.attrs['num_epitopes'] = data.num_epitopes
group.attrs['epitope_ratio'] = data.epitope_ratio
group.attrs['radius'] = data.radius
# Save epitope indices
group.create_dataset('epitope_indices', data=np.array(data.epitope_indices), compression='gzip', compression_opts=6)
def _load_cache_hdf5(self):
"""Load dataset from HDF5 cache."""
self.data_list = []
with h5py.File(self.cache_file, 'r') as f:
total_samples = f.attrs['num_samples']
for i in tqdm(range(total_samples), desc="Loading dataset...", disable=not self.verbose):
group = f[f'protein_{i}']
attrs = dict(group.attrs)
# Safe string decoding
def safe_decode(attr):
val = attrs[attr]
return val.decode('utf-8') if isinstance(val, bytes) else str(val)
data = Data(
x=torch.tensor(group['x'][:]),
pos=torch.tensor(group['pos'][:]),
rsa=torch.tensor(group['rsa'][:]),
edge_index=torch.tensor(group['edge_index'][:]),
edge_attr=torch.tensor(group['edge_attr'][:]),
y_node=torch.tensor(group['y_node'][:]),
epitope_indices=group['epitope_indices'][:].tolist(),
pdb_id=safe_decode('pdb_id'),
chain_id=safe_decode('chain_id'),
num_nodes=int(attrs['num_nodes']),
num_epitopes=int(attrs['num_epitopes']),
epitope_ratio=float(attrs['epitope_ratio']),
radius=float(attrs['radius'])
)
self.data_list.append(data)
# Apply undersampling if specified
if self.undersample is not None:
self.data_list = apply_undersample(
self.data_list,
self.undersample,
seed=self.seed,
verbose=self.verbose
)
def len(self) -> int:
"""Return the number of samples in the dataset."""
return len(self.data_list)
def get(self, idx: int) -> Data:
"""Get a sample by index."""
return self.data_list[idx]
def get_stats(self) -> Dict:
"""Get dataset statistics."""
if not self.data_list:
return {}
# Collect statistics
num_nodes_list = [data.num_nodes for data in self.data_list]
num_edges_list = [data.edge_index.shape[1] for data in self.data_list]
num_epitopes_list = [data.num_epitopes for data in self.data_list]
epitope_ratio_list = [data.epitope_ratio for data in self.data_list]
# Overall statistics
total_nodes = sum(num_nodes_list)
total_edges = sum(num_edges_list)
total_epitopes = sum(num_epitopes_list)
stats = {
'num_proteins': len(self.data_list),
'avg_nodes_per_protein': np.mean(num_nodes_list),
'std_nodes_per_protein': np.std(num_nodes_list),
'min_nodes_per_protein': np.min(num_nodes_list),
'max_nodes_per_protein': np.max(num_nodes_list),
'avg_edges_per_protein': np.mean(num_edges_list),
'std_edges_per_protein': np.std(num_edges_list),
'total_nodes': total_nodes,
'total_edges': total_edges,
'total_epitopes': total_epitopes,
'avg_epitopes_per_protein': np.mean(num_epitopes_list),
'avg_epitope_ratio': np.mean(epitope_ratio_list),
'overall_epitope_ratio': total_epitopes / total_nodes if total_nodes > 0 else 0,
}
return stats
def print_stats(self):
"""Print dataset statistics."""
stats = self.get_stats()
if not stats:
print("No statistics available (empty dataset)")
return
print(f"\n=== {self.data_split.upper()} Antigen Dataset Statistics ===")
print(f"Number of proteins: {stats['num_proteins']:,}")
print(f"Average nodes per protein: {stats['avg_nodes_per_protein']:.1f} ± {stats['std_nodes_per_protein']:.1f}")
print(f"Nodes per protein range: [{stats['min_nodes_per_protein']}, {stats['max_nodes_per_protein']}]")
print(f"Average edges per protein: {stats['avg_edges_per_protein']:.1f} ± {stats['std_edges_per_protein']:.1f}")
print(f"Total nodes: {stats['total_nodes']:,}")
print(f"Total edges: {stats['total_edges']:,}")
print(f"Total epitope nodes: {stats['total_epitopes']:,}")
print(f"Average epitopes per protein: {stats['avg_epitopes_per_protein']:.1f}")
print(f"Average epitope ratio per protein: {stats['avg_epitope_ratio']:.3f}")
print(f"Overall epitope ratio: {stats['overall_epitope_ratio']:.3f}")
print("=" * 50)
class SphereGraphDataset(Dataset):
"""
Optimized graph dataset for training ReGEP model using spherical regions from antigen chains.
Each graph represents a spherical region centered on a surface residue.
Optimizations:
- Only uses HDF5 format for caching
- Builds complete dataset without zero_ratio filtering
- Applies zero_ratio and undersample during loading
- Faster caching with optimized HDF5 structure
"""
def __init__(
self,
data_split: str = "train",
radius: int = 18,
threshold: float = 0.25,
num_posenc: int = 16,
num_rbf: int = 16,
zero_ratio: float = 0.1,
undersample: Union[int, float, None] = None,
cache_dir: Optional[str] = None,
force_rebuild: bool = False,
verbose: bool = True,
seed: int = 42,
use_embeddings2: bool = False
):
"""
Initialize the spherical graph dataset.
Args:
data_split: Data split name ('train', 'val', 'test')
radius: Radius for spherical regions
threshold: SASA threshold for surface residues
num_posenc: Number of positional encoding features
num_rbf: Number of RBF features
zero_ratio: Ratio to downsample graphs with recall=0 (0.3 means keep 30%)
undersample: Undersample parameter (int for count, float for ratio)
cache_dir: Directory to cache processed data
force_rebuild: Whether to force rebuild the dataset
verbose: Whether to print progress information
seed: Random seed for reproducibility
"""
self.data_split = data_split
self.radius = radius
self.threshold = threshold
self.num_posenc = num_posenc
self.num_rbf = num_rbf
self.zero_ratio = zero_ratio
self.undersample = undersample
self.verbose = verbose
self.seed = seed
self.use_embeddings2 = use_embeddings2
# Set cache directory to large disk
if cache_dir is None:
cache_dir = Path(f"{BASE_DIR}/data/region_cache/sphere_r{radius}")
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(parents=True, exist_ok=True)
# Cache file for this configuration (only HDF5)
self.cache_file = self.cache_dir / f"{data_split}_dataset_complete.h5"
# Load data splits
self.antigens = load_data_split(data_split, verbose=verbose)
# Initialize data list
self.data_list = []
# Load or build dataset
if self.cache_file.exists() and not force_rebuild:
if verbose:
print(f"Loading cached dataset with radius {self.radius} from {self.cache_file}")
self._load_cache()
else:
if verbose:
print(f"Building complete dataset with radius {self.radius} for {data_split} split...")
self._build_dataset()
self._save_cache()
super().__init__()
def _load_protein_data(self, pdb_id: str, chain_id: str) -> Optional[Dict]:
"""
Load precomputed protein data from files.
Args:
pdb_id: PDB ID
chain_id: Chain ID
Returns:
Dictionary containing all protein data or None if loading fails
"""
try:
protein_key = f"{pdb_id}_{chain_id}"
# Load embeddings
embedding_file = Path(BASE_DIR) / "data" / "embeddings" / 'esmc' / f"{protein_key}.h5"
if not embedding_file.exists():
if self.verbose:
print(f"Embedding file not found: {embedding_file}")
return None
with h5py.File(embedding_file, "r") as h5f:
embeddings = h5f["embedding"][:]
# Load other embeddings if available
esm2_file = Path(BASE_DIR) / "data" / "embeddings" / "esm2" / f"{protein_key}.h5"
if not esm2_file.exists():
if self.verbose:
print(f"ESM2 file not found: {esm2_file}")
embeddings2 = None
else:
with h5py.File(esm2_file, "r") as h5f:
embeddings2 = h5f["embedding"][:]
# Load backbone atoms
coords_file = Path(BASE_DIR) / "data" / "coords" / f"{protein_key}.npy"
if not coords_file.exists():
if self.verbose:
print(f"Coords file not found: {coords_file}")
return None
backbone_atoms = np.load(coords_file)
# Load RSA values
rsa_file = Path(BASE_DIR) / "data" / "rsa" / f"{protein_key}.npy"
if not rsa_file.exists():
if self.verbose:
print(f"RSA file not found: {rsa_file}")
return None
rsa_values = np.load(rsa_file)
# Load surface coverage data
sphere_file = Path(BASE_DIR) / "data" / "antigen_sphere" / f"{protein_key}.h5"
radius_key = f"r{self.radius}"
if not sphere_file.exists():
if self.verbose:
print(f"Sphere file not found: {sphere_file}")
return None
coverage_dict = {}
with h5py.File(sphere_file, "r") as h5f:
if radius_key not in h5f:
if self.verbose:
print(f"Radius {self.radius} not found in {sphere_file}")
return None
radius_group = h5f[radius_key]
for center_idx_str in radius_group.keys():
center_idx = int(center_idx_str)
center_group = radius_group[center_idx_str]
covered_indices = center_group['covered_indices'][:].tolist()
covered_epitope_indices = center_group['covered_epitope_indices'][:].tolist()
precision = float(center_group.attrs['precision'])
recall = float(center_group.attrs['recall'])
coverage_dict[center_idx] = (covered_indices, covered_epitope_indices, precision, recall)
# Load epitope data
_, _, epitopes = load_epitopes_csv()
binary_labels = epitopes.get(protein_key, [])
# Create epitope indices
epitope_indices = []
for idx, is_epitope in enumerate(binary_labels):
if is_epitope == 1:
epitope_indices.append(idx)
return {
'embeddings': embeddings,
'backbone_atoms': backbone_atoms,
'rsa_values': rsa_values,
'coverage_dict': coverage_dict,
'epitope_indices': epitope_indices,
'embeddings2': embeddings2
}
except Exception as e:
if self.verbose:
print(f"Error loading protein data for {pdb_id}_{chain_id}: {str(e)}")
return None
def _build_dataset(self):
"""Build the complete dataset from precomputed data files (no zero_ratio filtering)."""
failed_proteins = []
for pdb_id, chain_id in tqdm(self.antigens, desc=f"Processing {self.data_split} antigens",
disable=not self.verbose):
try:
# Load precomputed data directly
protein_data = self._load_protein_data(pdb_id, chain_id)
if protein_data is None:
if self.verbose:
print(f"Failed to load data for {pdb_id}_{chain_id}")
continue
embeddings = protein_data['embeddings']
embeddings2 = protein_data['embeddings2']
backbone_atoms = protein_data['backbone_atoms']
rsa_values = protein_data['rsa_values']
coverage_dict = protein_data['coverage_dict']
epitope_indices = protein_data['epitope_indices']
if not coverage_dict:
if self.verbose:
print(f"No surface regions found for {pdb_id}_{chain_id}")
continue
# Process each spherical region (no zero_ratio filtering here)
for center_idx, (covered_indices, covered_epitope_indices, precision, recall) in coverage_dict.items():
if len(covered_indices) < 2: # Skip regions with too few residues
continue
# Create graph data for this region (include all data)
graph_data = create_graph_data(
center_idx=center_idx,
covered_indices=covered_indices,
covered_epitope_indices=covered_epitope_indices,
embeddings=embeddings,
embeddings2=embeddings2,
backbone_atoms=backbone_atoms,
rsa_values=rsa_values,
epitope_indices=epitope_indices,
recall=recall,
precision=precision,
pdb_id=pdb_id,
chain_id=chain_id,
num_rbf=self.num_rbf,
num_posenc=self.num_posenc,
verbose=self.verbose
)
if graph_data is not None:
self.data_list.append(graph_data)
except Exception as e:
failed_proteins.append(f"{pdb_id}_{chain_id}")
if self.verbose:
print(f"Error processing {pdb_id}_{chain_id}: {str(e)}")
if failed_proteins and self.verbose:
print(f"Failed to process {len(failed_proteins)} proteins: {failed_proteins[:5]}...")
if self.verbose:
print(f"Successfully created {len(self.data_list)} graph samples (complete dataset)")
def _save_cache(self):
"""Save processed dataset to cache."""
try:
self._save_cache_hdf5()
if self.verbose:
print(f"Dataset cached to {self.cache_file}")
except Exception as e:
if self.verbose:
print(f"Failed to save cache: {str(e)}")
def _load_cache(self):
"""Load processed dataset from cache."""
try:
self._load_cache_hdf5()
if self.verbose:
print(f"Loaded {len(self.data_list)} samples from cache")
except Exception as e:
if self.verbose:
print(f"Failed to load cache: {str(e)}")
self.data_list = []
def _save_cache_hdf5(self):
"""Save dataset using optimized HDF5 format for faster loading."""
with h5py.File(self.cache_file, 'w') as f:
# Save metadata
f.attrs['num_samples'] = len(self.data_list)
f.attrs['radius'] = self.radius
f.attrs['threshold'] = self.threshold
f.attrs['data_split'] = self.data_split
f.attrs['complete_dataset'] = True # Mark as complete dataset
# Pre-allocate arrays for better performance
num_samples = len(self.data_list)
if num_samples == 0:
return
# Collect all data first to determine max dimensions
all_x = []
all_pos = []
all_rsa = []
all_edge_index = []
all_edge_attr = []
all_y = []
all_y_node = []
all_center_idx = []
all_precision = []
all_pdb_ids = []
all_chain_ids = []
all_num_nodes = []
all_covered_indices = []
all_embeddings2 = []
max_nodes = 0
max_edges = 0
for data in self.data_list:
all_x.append(data.x.numpy())
all_pos.append(data.pos.numpy())
all_rsa.append(data.rsa.numpy())
all_edge_index.append(data.edge_index.numpy())
all_edge_attr.append(data.edge_attr.numpy())
all_y.append(data.y.numpy())
all_y_node.append(data.y_node.numpy())
all_center_idx.append(data.center_idx)
all_precision.append(data.precision)
all_pdb_ids.append(data.pdb_id.encode('utf-8'))
all_chain_ids.append(data.chain_id.encode('utf-8'))
all_num_nodes.append(data.num_nodes)
all_covered_indices.append(data.covered_indices)
# Handle embeddings2 safely - it could be None or numpy array
if hasattr(data, 'embeddings2') and data.embeddings2 is not None:
if isinstance(data.embeddings2, np.ndarray):
all_embeddings2.append(data.embeddings2)
else:
# It's a torch tensor
all_embeddings2.append(data.embeddings2.numpy())
else:
# No embeddings2 available, use zeros as placeholder
all_embeddings2.append(np.zeros((data.num_nodes, 1280), dtype=np.float32)) # ESM2 dim
max_nodes = max(max_nodes, data.num_nodes)
max_edges = max(max_edges, data.edge_index.shape[1])
# Save each graph as a separate group with compression
progress_bar = tqdm(enumerate(self.data_list), total=num_samples, desc="Saving dataset...", disable=not self.verbose)
for i, data in progress_bar:
group = f.create_group(f'graph_{i}')
# Save tensors as datasets with compression
group.create_dataset('x', data=all_x[i], compression='gzip', compression_opts=6)
group.create_dataset('pos', data=all_pos[i], compression='gzip', compression_opts=6)
group.create_dataset('rsa', data=all_rsa[i], compression='gzip', compression_opts=6)
group.create_dataset('edge_index', data=all_edge_index[i], compression='gzip', compression_opts=6)
group.create_dataset('edge_attr', data=all_edge_attr[i], compression='gzip', compression_opts=6)
group.create_dataset('y', data=all_y[i], compression='gzip', compression_opts=6)
group.create_dataset('y_node', data=all_y_node[i], compression='gzip', compression_opts=6)
group.create_dataset('embeddings2', data=all_embeddings2[i], compression='gzip', compression_opts=6)
# Save scalar attributes
group.attrs['center_idx'] = all_center_idx[i]
group.attrs['precision'] = all_precision[i]
group.attrs['pdb_id'] = all_pdb_ids[i]
group.attrs['chain_id'] = all_chain_ids[i]
group.attrs['num_nodes'] = all_num_nodes[i]
# Save list attributes as datasets with compression
group.create_dataset('covered_indices', data=np.array(all_covered_indices[i]), compression='gzip', compression_opts=6)
def _load_cache_hdf5(self):
"""Optimized cache loader with robust string handling."""
self.data_list = []
with h5py.File(self.cache_file, 'r') as f:
# PHASE 1: Rapid metadata scan
zero_recall_indices = []
non_zero_recall_indices = []
total_samples = f.attrs['num_samples']
if self.verbose:
print(f"Scanning {total_samples} samples for recall values...")
for i in range(total_samples):
recall = f[f'graph_{i}/y'][0].item()
if recall == 0.0:
zero_recall_indices.append(i)
else:
non_zero_recall_indices.append(i)
# PHASE 2: Apply zero_ratio filtering
selected_indices = non_zero_recall_indices.copy()
if isinstance(self.zero_ratio, (int, float)) and 0 <= self.zero_ratio <= 1:
if self.zero_ratio < 1.0 and zero_recall_indices:
random.seed(self.seed)
target_count = int(len(zero_recall_indices) * self.zero_ratio)
selected_zero_indices = random.sample(zero_recall_indices, target_count)
selected_indices.extend(selected_zero_indices)
if self.verbose:
kept = len(selected_zero_indices)
total = len(zero_recall_indices)
print(f"Zero-recall filtering: kept {kept}/{total} samples (ratio={self.zero_ratio})")
else:
selected_indices.extend(zero_recall_indices)
# PHASE 3: Selective data loading with safe string handling
if self.verbose:
print(f"Loading {len(selected_indices)} selected samples...")
for idx in tqdm(selected_indices, disable=not self.verbose):
group = f[f'graph_{idx}']
attrs = dict(group.attrs)
# Safe string decoding
def safe_decode(attr):
val = attrs[attr]
return val.decode('utf-8') if isinstance(val, bytes) else str(val)
# Load embeddings2 if available and use_embeddings2 is True
if 'embeddings2' in group and self.use_embeddings2:
if group['embeddings2'] is not None:
emb = torch.tensor(group['embeddings2'][:])
else:
emb = torch.tensor(group['x'][:])
else:
emb = torch.tensor(group['x'][:])
data = Data(
x=emb,
pos=torch.tensor(group['pos'][:]),
rsa=torch.tensor(group['rsa'][:]),
edge_index=torch.tensor(group['edge_index'][:]),
edge_attr=torch.tensor(group['edge_attr'][:]),
y=torch.tensor(group['y'][:]),
y_node=torch.tensor(group['y_node'][:]),
center_idx=int(attrs['center_idx']),
covered_indices=group['covered_indices'][:].tolist(),
precision=float(attrs['precision']),
pdb_id=safe_decode('pdb_id'),
chain_id=safe_decode('chain_id'),
num_nodes=int(attrs['num_nodes'])
)
self.data_list.append(data)
# PHASE 4: Apply undersampling
if self.undersample is not None:
self.data_list = apply_undersample(
self.data_list,
self.undersample,
seed=self.seed,
verbose=self.verbose
)
if self.verbose:
print(f"Loaded {len(self.data_list)} samples (optimized loader)")
def len(self) -> int:
"""Return the number of samples in the dataset."""
return len(self.data_list)
def get(self, idx: int) -> Data:
"""Get a sample by index."""
return self.data_list[idx]
def apply_filters(self, zero_ratio: Optional[float] = None, undersample: Union[int, float, None] = None, seed: int = None):
"""
Apply filtering to the already loaded dataset (for compatibility).
Note: It's more efficient to set these parameters during initialization.
Args:
zero_ratio: Ratio to downsample graphs with recall=0
undersample: Undersample parameter
seed: Random seed for reproducibility
"""
if seed is None:
seed = self.seed
# Update instance parameters and re-filter
if zero_ratio is not None:
self.zero_ratio = zero_ratio
if undersample is not None:
self.undersample = undersample
if seed is not None:
self.seed = seed
# Reload from cache with new parameters
if self.cache_file.exists():
if self.verbose:
print("Re-applying filters to cached dataset...")
self._load_cache_hdf5()
else:
if self.verbose:
print("Warning: No cache file found, filters cannot be applied")
def get_stats(self) -> Dict:
"""Get dataset statistics."""
if not self.data_list:
return {}
# Collect statistics
num_nodes_list = [data.num_nodes for data in self.data_list]
recall_list = [data.y.item() for data in self.data_list]
precision_list = [data.precision for data in self.data_list]
# Node-level statistics
total_nodes = sum(num_nodes_list)
total_epitopes = sum([data.y_node.sum().item() for data in self.data_list])
num_zero_recall = sum([1 for data in self.data_list if data.y.item() == 0])
stats = {
'num_graphs': len(self.data_list),
'avg_nodes_per_graph': np.mean(num_nodes_list),
'std_nodes_per_graph': np.std(num_nodes_list),
'min_nodes_per_graph': np.min(num_nodes_list),
'max_nodes_per_graph': np.max(num_nodes_list),
'total_nodes': total_nodes,
'total_epitopes': total_epitopes,
'epitope_ratio': total_epitopes / total_nodes if total_nodes > 0 else 0,
'avg_recall': np.mean(recall_list),
'std_recall': np.std(recall_list),
'avg_precision': np.mean(precision_list),
'std_precision': np.std(precision_list),
'num_zero_recall': num_zero_recall,
}
return stats
def print_stats(self):
"""Print dataset statistics."""
stats = self.get_stats()
if not stats:
print("No statistics available (empty dataset)")
return
print(f"\n=== {self.data_split.upper()} Dataset Statistics ===")
print(f"Number of graphs: {stats['num_graphs']:,}")
print(f"Average nodes per graph: {stats['avg_nodes_per_graph']:.1f} ± {stats['std_nodes_per_graph']:.1f}")
print(f"Nodes per graph range: [{stats['min_nodes_per_graph']}, {stats['max_nodes_per_graph']}]")
print(f"Total nodes: {stats['total_nodes']:,}")
print(f"Total epitope nodes: {stats['total_epitopes']:,}")
print(f"Epitope ratio: {stats['epitope_ratio']:.3f}")
print(f"Average recall: {stats['avg_recall']:.3f} ± {stats['std_recall']:.3f}")
print(f"Average precision: {stats['avg_precision']:.3f} ± {stats['std_precision']:.3f}")
print(f"Number of graphs with zero recall: {stats['num_zero_recall']:,}")
print("=" * 40)
class MultiRadiusGraphDataset(Dataset):
"""
Dataset that combines multiple radius datasets for multi-scale training.
"""
def __init__(
self,
data_split: str = "train",
radii: List[int] = [16, 18, 20],
threshold: float = 0.25,
num_posenc: int = 16,
num_rbf: int = 16,
zero_ratio: float = 0.1,
undersample: Union[int, float, None] = None,
cache_dir: Optional[str] = None,
force_rebuild: bool = False,
verbose: bool = True,
use_embeddings2: bool = False
):
"""
Initialize multi-radius dataset.
Args:
data_split: Data split name
radii: List of radii to use
threshold: SASA threshold for surface residues
num_posenc: Number of positional encoding features
num_rbf: Number of RBF features
zero_ratio: Ratio to downsample graphs with recall=0
undersample: Undersample parameter (int for count, float for ratio)
cache_dir: Directory to cache processed data
force_rebuild: Whether to force rebuild the dataset
verbose: Whether to print progress information
"""
self.data_split = data_split
self.radii = radii
self.verbose = verbose
# Create individual datasets
self.datasets = []
for radius in radii:
dataset = SphereGraphDataset(
data_split=data_split,
radius=radius,
threshold=threshold,
num_posenc=num_posenc,
num_rbf=num_rbf,
zero_ratio=zero_ratio,
undersample=undersample,
cache_dir=cache_dir,
force_rebuild=force_rebuild,
verbose=verbose,
use_embeddings2=use_embeddings2
)
self.datasets.append(dataset)
# Combine all data
self.data_list = []
for dataset in self.datasets:
self.data_list.extend(dataset.data_list)
if verbose:
print(f"Combined {len(self.datasets)} datasets with {len(self.data_list)} total samples")
super().__init__()
def len(self) -> int:
return len(self.data_list)
def get(self, idx: int) -> Data:
return self.data_list[idx]
def apply_filters(self, undersample: Union[int, float, None] = None, seed: int = 42):
"""
Apply filtering to the loaded multi-radius dataset.
Args:
undersample: Undersample parameter (int for count, float for ratio)
seed: Random seed for reproducibility
"""
if undersample is not None:
original_size = len(self.data_list)
self.data_list = apply_undersample(self.data_list, undersample, seed=seed, verbose=True)
def get_stats(self) -> Dict:
"""Get combined dataset statistics."""
if not self.data_list:
return {}
# Collect statistics
num_nodes_list = [data.num_nodes for data in self.data_list]
recall_list = [data.y.item() for data in self.data_list]
# Node-level statistics
total_nodes = sum(num_nodes_list)
total_epitopes = sum([data.y_node.sum().item() for data in self.data_list])
stats = {
'num_graphs': len(self.data_list),
'num_radii': len(self.radii),
'radii': self.radii,
'avg_nodes_per_graph': np.mean(num_nodes_list),
'std_nodes_per_graph': np.std(num_nodes_list),
'min_nodes_per_graph': np.min(num_nodes_list),
'max_nodes_per_graph': np.max(num_nodes_list),
'total_nodes': total_nodes,
'total_epitopes': total_epitopes,
'epitope_ratio': total_epitopes / total_nodes if total_nodes > 0 else 0,
'avg_recall': np.mean(recall_list),
}
return stats
def print_stats(self):
"""Print dataset statistics."""
stats = self.get_stats()
if not stats:
print("No statistics available (empty dataset)")
return
print(f"\n=== {self.data_split.upper()} Dataset Statistics ===")
print(f"Number of graphs: {stats['num_graphs']:,}")
print(f"Average nodes per graph: {stats['avg_nodes_per_graph']:.1f} ± {stats['std_nodes_per_graph']:.1f}")
print(f"Nodes per graph range: [{stats['min_nodes_per_graph']}, {stats['max_nodes_per_graph']}]")
print(f"Total nodes: {stats['total_nodes']:,}")
print(f"Total epitope nodes: {stats['total_epitopes']:,}")
print(f"Epitope ratio: {stats['epitope_ratio']:.3f}")
print(f"Average recall: {stats['avg_recall']:.3f} ± {stats['std_recall']:.3f}")
print(f"Average precision: {stats['avg_precision']:.3f} ± {stats['std_precision']:.3f}")
print("=" * 40)
# Utility functions for dataset creation and management
def create_datasets(
radii: List[int] = [16, 18, 20],
splits: List[str] = ["train", "test"],
threshold: float = 0.25,
zero_ratio: float = None,
undersample: Union[int, float, None] = None,
cache_dir: Optional[str] = None,
force_rebuild: bool = False,
verbose: bool = False,
seed: int = 42,
use_embeddings2: bool = False,
) -> Dict[str, SphereGraphDataset]:
"""
Create optimized datasets for all splits and radii.
Args:
radii: List of radii to use
splits: List of data splits to create
threshold: SASA threshold for surface residues
zero_ratio: Ratio to downsample graphs with recall=0
undersample: Undersample parameter (int for count, float for ratio)
cache_dir: Directory to cache processed data
force_rebuild: Whether to force rebuild datasets
verbose: Whether to print progress information
seed: Random seed for reproducibility
Returns:
Dictionary mapping split names to datasets
"""
datasets = {}
for split in splits:
if len(radii) == 1:
# Single radius dataset
dataset = SphereGraphDataset(
data_split=split,
radius=radii[0],
threshold=threshold,
zero_ratio=zero_ratio,
undersample=undersample,
cache_dir=cache_dir,
force_rebuild=force_rebuild,
verbose=verbose,
seed=seed,
use_embeddings2=use_embeddings2
)
if verbose:
dataset.print_stats()
else:
# Multi-radius dataset
dataset = MultiRadiusGraphDataset(
data_split=split,
radii=radii,
threshold=threshold,
zero_ratio=zero_ratio,
undersample=undersample,
cache_dir=cache_dir,
force_rebuild=force_rebuild,
verbose=verbose,
use_embeddings2=use_embeddings2
)
datasets[split] = dataset
return datasets
def custom_collate_fn(batch):
"""
Custom collate function for ReGEP model.
Converts PyG Data objects to the format expected by ReGEP.
"""
# Use PyG's default batching
batched_data = Batch.from_data_list(batch)
# ReGEP expects the input features to be concatenated
# x: [N_total, embed_dim], rsa: [N_total], ss: [N_total, 2]
# The model will concatenate them internally: [x, rsa, ss] -> [N_total, embed_dim + 3]
return batched_data
class ReGEPDataLoader(DataLoader):
"""
Custom DataLoader for ReGEP model that handles the specific input format.
Supports undersampling at the DataLoader level.
"""
def __init__(self, dataset, batch_size=32, shuffle=True, **kwargs):
"""
Initialize ReGEP DataLoader with optional undersampling.
Args:
dataset: The dataset to load from
batch_size: Batch size
shuffle: Whether to shuffle the data
**kwargs: Additional arguments for DataLoader
"""
# Set default collate_fn if not provided
if 'collate_fn' not in kwargs:
kwargs['collate_fn'] = custom_collate_fn
super().__init__(
dataset=dataset,
batch_size=batch_size,
shuffle=shuffle,
**kwargs
)
def create_data_loader(
radii=[16, 18, 20],
batch_size=32,
zero_ratio=0.1,
undersample=0.5,
seed=42,
verbose=False,
use_embeddings2=False,
**kwargs
):
"""
Create train and test data loaders.
Args:
radii (list): List of radii for data processing
batch_size (int): Batch size for training
zero_ratio (float): Ratio of zero samples for training
undersample (float): Undersampling ratio for training
seed (int): Random seed
verbose (bool): Whether to print verbose information
**kwargs: Additional arguments for data loader
Returns:
tuple: (train_loader, test_loader)
"""
train_dataset = create_datasets(
radii=radii,
splits=["train"],
threshold=0.25,
undersample=undersample,
zero_ratio=zero_ratio,
cache_dir=None,
seed=seed,
verbose=verbose,
use_embeddings2=use_embeddings2
)["train"]
test_dataset = create_datasets(
radii=radii,
splits=["test"],
threshold=0.25,
undersample=None,
zero_ratio=None,
cache_dir=None,
verbose=verbose,
use_embeddings2=use_embeddings2
)["test"]
train_loader = ReGEPDataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=custom_collate_fn,
**kwargs
)
test_loader = ReGEPDataLoader(
test_dataset,
batch_size=batch_size*4,
shuffle=False,
**kwargs
)
return train_loader, test_loader
|