File size: 17,814 Bytes
e611d1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
from pathlib import Path
from prettytable import PrettyTable

import torch
import torch.nn as nn
from torch_scatter import scatter_softmax, scatter_sum
from torch_geometric.data import Data, Batch

from .dihedral import DihedralFeatures
from .EGNN import EGNNLayer
from .pooling import AttentionPooling, AddPooling
from .activation import get_activation
# from .baseline import EP

class ReCEP(nn.Module):
    """
    Refined Graph Epitope Predictor with optional EGNN layer skipping for ablation.
    """
    def __init__(
        self,
        in_dim: int = 2560,
        rsa: bool = True,
        dihedral: bool = True,
        node_dims: list = [512, 256, 256],
        edge_dim: int = 32,
        dropout: float = 0.3,
        activation: str = "gelu",
        residual: bool = True,
        attention: bool = True,
        normalize: bool = True,
        coords_agg: str = 'mean',
        ffn: bool = True,
        batch_norm: bool = True,
        concat: bool = False,
        addition: bool = False,
        # Global predictor
        pooling: str = 'attention',
        # Node classifier
        fusion_type: str = 'concat',
        node_gate: bool = False,
        node_norm: bool = False,
        node_layers: int = 2,
        out_dropout: float = 0.2,
        use_egnn: bool = True,  # NEW: toggle for EGNN layer usage
        encoder: str = 'esmc',
    ):
        super().__init__()
        self.use_egnn = use_egnn
        self.in_dim = in_dim
        self.rsa = rsa
        self.dihedral = dihedral
        self.original_node_dims = node_dims.copy()
        self.edge_dim = edge_dim
        self.dropout = dropout
        self.activation = activation
        self.residual = residual
        self.attention = attention
        self.normalize = normalize
        self.ffn = ffn
        self.batch_norm = batch_norm
        self.coords_agg = coords_agg
        self.concat = concat
        self.addition = addition
        self.fusion_type = fusion_type
        self.node_gate = node_gate
        self.node_norm = node_norm
        self.node_layers = node_layers
        self.out_dropout = out_dropout
        self.pooling = pooling

        self.base_node_dim = node_dims[0]
        self.node_dims = node_dims.copy()
        self.node_dims[0] += 1 if rsa else 0
        
        self.node_dims[-1] = self.node_dims[0] if addition else self.node_dims[-1]
        
        # Modify input dimension based on encoder
        self.encoder = encoder
        if encoder == 'esmc':
            self.in_dim = 2560
        elif encoder == 'esm2':
            self.in_dim = 1280
        else:
            self.in_dim = in_dim
        
        # Calculate actual final node dimension based on whether EGNN is used
        if self.use_egnn:
            self.final_node_dim = self.node_dims[-1]
        else:
            self.final_node_dim = self.node_dims[0]
            self.concat = False
            self.addition = False

        self.proj_layer = nn.Sequential(
            nn.Linear(self.in_dim, self.base_node_dim),
            get_activation(activation),
            nn.Dropout(dropout),
        )

        if dihedral:
            try:
                self.dihedral_features = DihedralFeatures(self.base_node_dim)
            except:
                print("Warning: DihedralFeatures not found, skipping dihedral features")
                self.dihedral = False

        self.egnn_layers = nn.ModuleList()
        if self.use_egnn:
            for i in range(len(self.node_dims) - 1):
                self.egnn_layers.append(
                    EGNNLayer(
                        input_nf=self.node_dims[i],
                        output_nf=self.node_dims[i+1],
                        hidden_nf=self.node_dims[i+1],
                        edges_in_d=edge_dim,
                        act_fn=get_activation(activation),
                        residual=residual,
                        attention=attention,
                        normalize=normalize,
                        coords_agg=coords_agg,
                        dropout=dropout,
                        ffn=ffn,
                        batch_norm=batch_norm
                    )
                )

        if concat and self.use_egnn:
            self.final_node_dim += self.node_dims[0]
            
        if addition and self.use_egnn:
            assert self.node_dims[0] == self.node_dims[-1], "Node dimension mismatch for addition"
            self.final_node_dim = self.node_dims[0]
            
        # Calculate node classifier input dimension based on fusion type
        if fusion_type == 'concat':
            self.node_classifier_input_dim = self.final_node_dim * 2
        elif fusion_type == 'add':
            self.node_classifier_input_dim = self.final_node_dim
        else:
            raise ValueError(f"Unsupported fusion type: {fusion_type}")
        
        # Calculate node gate input dimension
        if node_gate:
            if fusion_type == 'concat':
                self.node_gate_input_dim = self.final_node_dim * 2
            elif fusion_type == 'add':
                self.node_gate_input_dim = self.final_node_dim
            else:
                raise ValueError(f"Unsupported fusion type: {fusion_type}")

        if pooling == 'attention':
            self.graph_pool = AttentionPooling(
                input_dim=self.final_node_dim,
                dropout=dropout,
                activation=activation
            )
        elif pooling == 'add':
            self.graph_pool = AddPooling(
                input_dim=self.final_node_dim,
                dropout=dropout
            )
        else:
            raise ValueError(f"Unsupported pooling method: {pooling}")

        self.global_predictor = nn.Sequential(
            nn.Linear(self.final_node_dim, self.final_node_dim // 2),
            get_activation(activation),
            nn.Dropout(out_dropout),
            nn.Linear(self.final_node_dim // 2, 1)
        )

        if node_gate:
            self.node_gate = nn.Sequential(
                nn.Linear(self.node_gate_input_dim, self.final_node_dim),
                get_activation(activation),
                nn.LayerNorm(self.final_node_dim),
                nn.Linear(self.final_node_dim, self.final_node_dim),
                nn.Sigmoid()
            )

        self.node_classifier = self._build_node_classifier()

        self._param_printed = False
        self.apply(self._init_weights)

    def _build_node_classifier(self):
        layers = []
        input_dim = self.node_classifier_input_dim
        current_dim = input_dim
        for i in range(self.node_layers):
            output_dim = 1 if i == self.node_layers - 1 else max(current_dim // 2, 32)
            layers.append(nn.Linear(current_dim, output_dim))
            if self.node_norm and i < self.node_layers - 1:
                layers.append(nn.LayerNorm(output_dim))
            if i < self.node_layers - 1:
                layers.append(get_activation(self.activation))
                layers.append(nn.Dropout(self.out_dropout))
            current_dim = output_dim
        return nn.Sequential(*layers)

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            nn.init.xavier_normal_(module.weight)
            if module.bias is not None:
                nn.init.constant_(module.bias, 0.0 if module.out_features == 1 else 0.01)
        elif isinstance(module, nn.LayerNorm):
            nn.init.ones_(module.weight)
            nn.init.zeros_(module.bias)

    def forward(self, data: Batch) -> dict:
        if self.training and not self._param_printed:
            print(f"ReCEP total params: {sum(p.numel() for p in self.parameters()):,}")
            self._param_printed = True

        x = data.x
    
        coords = data.pos
        batch = data.batch
        e_attr = data.edge_attr
        coords_C = coords[:, 1].clone()

        x = self.proj_layer(x)
        if self.dihedral and coords is not None:
            x = x + self.dihedral_features(coords)
        if self.rsa and data.rsa is not None:
            rsa = data.rsa.unsqueeze(-1)
            x = torch.cat([x, rsa], dim=-1)

        h = x
        assert h.shape[1] == self.node_dims[0], f"[ReCEP] Node feature dim mismatch: got {h.shape[1]}, expected {self.node_dims[0]}"

        if self.use_egnn:
            for layer in self.egnn_layers:
                h, coords_C, _ = layer(h, coords_C, data.edge_index, batch, edge_attr=e_attr)

        if self.concat and self.use_egnn:
            h = torch.cat([x, h], dim=-1)
        elif self.addition and self.use_egnn:
            h = h + x

        graph_feats = self.graph_pool(h, batch)
        global_pred = self.global_predictor(graph_feats).squeeze(-1)

        context = graph_feats[batch]
        if self.node_gate and hasattr(self, 'node_gate'):
            if self.fusion_type == 'concat':
                gate_input = torch.cat([h, context], dim=-1)
            elif self.fusion_type == 'add':
                gate_input = h + context
            else:
                raise ValueError(f"Unsupported fusion type: {self.fusion_type}")
            gate = self.node_gate(gate_input)
            gated_h = h + gate * h
        else:
            gated_h = h

        if self.fusion_type == 'concat':
            cat = torch.cat([gated_h, context], dim=-1)
        elif self.fusion_type == 'add':
            # Ensure dimensions match for addition
            assert gated_h.shape[-1] == context.shape[-1], f"[ReCEP] Dimension mismatch for add fusion: gated_h {gated_h.shape[-1]} vs context {context.shape[-1]}"
            cat = gated_h + context
        else:
            raise ValueError(f"Unsupported fusion type: {self.fusion_type}")
        
        # Verify input dimension matches node classifier expectation
        expected_dim = self.node_classifier_input_dim
        actual_dim = cat.shape[-1]
        assert actual_dim == expected_dim, f"[ReCEP] Node classifier input dim mismatch: got {actual_dim}, expected {expected_dim}"
        
        node_preds = self.node_classifier(cat).squeeze(-1)

        return {"global_pred": global_pred, "node_preds": node_preds}
    
    def print_param_count(self):
        """Print a summary table of parameter counts"""
        table = PrettyTable()
        table.field_names = ["Layer Name", "Type", "Parameters", "Trainable"]
        total_params = 0
        trainable_params = 0

        for name, module in self.named_modules():
            if not list(module.children()):  # Only leaf nodes
                params = sum(p.numel() for p in module.parameters())
                is_trainable = any(p.requires_grad for p in module.parameters())
                
                if params > 0:
                    total_params += params
                    trainable_params += params if is_trainable else 0
                    
                    table.add_row([
                        name,
                        module.__class__.__name__,
                        f"{params:,}",
                        "✓" if is_trainable else "✗"
                    ])

        table.add_row(["", "", "", ""], divider=True)
        table.add_row([
            "TOTAL", 
            "", 
            f"{total_params:,}",
            f"Trainable: {trainable_params:,}"
        ])

        print("\nReCEP Model Parameter Summary:")
        print(table)
        print(f"Parameter Density: {trainable_params/total_params:.1%}\n")
    
    def save(self, path, threshold: float = 0.5):
        """Save model with configuration"""
        path = Path(path)
        try:
            path.parent.mkdir(parents=True, exist_ok=True)
            save_path = path.with_suffix('.bin')
            
            config = self.get_config()
            # config = {
            #     'in_dim': self.in_dim,
            #     'rsa': self.rsa,
            #     'dihedral': self.dihedral,
            #     'node_dims': self.original_node_dims,  # Use original node_dims
            #     'edge_dim': self.edge_dim,
            #     'dropout': self.dropout,
            #     'activation': self.activation,
            #     'residual': self.residual,
            #     'attention': self.attention,
            #     'normalize': self.normalize,
            #     'coords_agg': self.coords_agg,
            #     'ffn': self.ffn,
            #     'batch_norm': self.batch_norm,
            #     'concat': self.concat,
            #     'node_norm': self.node_norm,
            #     'node_layers': self.node_layers,
            #     'node_gate': self.node_gate,
            #     'out_dropout': self.out_dropout
            # }
            
            torch.save({
                'model_state': self.state_dict(),
                'config': config,
                'model_class': self.__class__.__name__,
                'version': '1.0',
                'threshold': threshold
            }, save_path)
            print(f"ReCEP model saved to {save_path}")
        except Exception as e:
            print(f"Save failed: {str(e)}")
            raise
    
    @classmethod
    def load(cls, path, device='cpu', strict=True, verbose=True):
        """Load model with configuration"""
        path = Path(path)
        if not path.exists():
            raise FileNotFoundError(f"Model file {path} not found")

        try:
            if isinstance(device, str):
                device = torch.device(device)
            elif isinstance(device, int):
                if device >= 0 and torch.cuda.is_available():
                    device = torch.device(f'cuda:{device}')
                else:
                    device = torch.device('cpu')
            elif not isinstance(device, torch.device):
                raise ValueError(f"Unsupported device type: {type(device)}")
            
            checkpoint = torch.load(
                path,
                map_location=device,
                weights_only=False
            )
        except RuntimeError:
            print("Warning: Using unsafe load due to weights_only restriction")
            checkpoint = torch.load(path, map_location=device)

        # Version compatibility check
        if 'version' not in checkpoint:
            print("Warning: Loading legacy model without version info")
        
        # Rebuild configuration
        config = checkpoint.get('config', {})
        model = cls(**config)
        
        # Load state dict
        model_state = checkpoint['model_state']
        current_state = model.state_dict()
        
        # Auto-match parameters
        matched_state = {}
        for name, param in model_state.items():
            if name in current_state:
                if param.shape == current_state[name].shape:
                    matched_state[name] = param
                else:
                    print(f"Size mismatch: {name} (load {param.shape} vs model {current_state[name].shape})")
            else:
                print(f"Parameter not found: {name}")
        
        current_state.update(matched_state)
        model.load_state_dict(current_state, strict=strict)
        
        if verbose:
            print(f"Successfully loaded {len(matched_state)}/{len(model_state)} parameters")
        
        return model.to(device), checkpoint.get('threshold', 0.5)
    
    def get_config(self):
        """Get model configuration"""
        return {
            'in_dim': self.in_dim,
            'rsa': self.rsa,
            'dihedral': self.dihedral,
            'node_dims': self.original_node_dims,
            'edge_dim': self.edge_dim,
            'dropout': self.dropout,
            'activation': self.activation,
            'residual': self.residual,
            'attention': self.attention,
            'normalize': self.normalize,
            'coords_agg': self.coords_agg,
            'ffn': self.ffn,
            'batch_norm': self.batch_norm,
            'concat': self.concat,
            'addition': self.addition,
            'pooling': self.pooling,
            'fusion_type': self.fusion_type,
            'node_gate': self.node_gate,
            'node_norm': self.node_norm,
            'node_layers': self.node_layers,
            'out_dropout': self.out_dropout,
            'use_egnn': self.use_egnn,
            'encoder': self.encoder
        }
        
        
model_registry = {
    "ReCEP": ReCEP,
}

def get_model(configs):
    """
    Flexible model loader. Accepts either an argparse.Namespace or a dict.
    Returns an instance of the selected model.
    """
    # Support both argparse.Namespace and dict
    if hasattr(configs, '__dict__'):
        args = vars(configs)
    else:
        args = configs
    
    # Default to ReCEP if no model specified
    model_name = args.get('model', 'ReCEP')
    
    if model_name not in model_registry:
        valid_models = list(model_registry.keys())
        raise ValueError(f"Invalid model type: {model_name}. Must be one of: {valid_models}")
    
    model_class = model_registry[model_name]
    
    # Use inspect to get the model's __init__ parameters
    import inspect
    init_signature = inspect.signature(model_class.__init__)
    parameters = init_signature.parameters
    
    # Build model configuration from args
    model_config = {}
    for param_name, param in parameters.items():
        if param_name == 'self':
            continue
        if param_name in args:
            model_config[param_name] = args[param_name]
        elif param.default is not param.empty:
            model_config[param_name] = param.default
        else:
            print(f"[WARNING] Required parameter '{param_name}' not found in args and has no default value")
    
    # print(f"[INFO] Creating {model_name} model with config: {list(model_config.keys())}")
    model = model_class(**model_config)
    return model