File size: 13,527 Bytes
e611d1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import numpy as np
import pandas as pd
from tqdm import tqdm
from sklearn.metrics import roc_curve, auc, precision_recall_curve
from .constants import BASE_DIR
from .loading import load_data_split
from ..antigen.antigen import AntigenChain
from .metrics import find_optimal_threshold, calculate_node_metrics
def evaluate_ReCEP(model_path, device_id=0, radius=18.0, threshold=0.5, k=5,
verbose=True, split="test", save_results=True, output_dir=None, encoder="esmc"):
"""
Evaluate ReCEP model on a dataset split using both probability-based and voting-based predictions.
Args:
model_path: Path to the trained ReCEP model
device_id: GPU device ID
radius: Radius for spherical regions
threshold: Threshold for probability-based predictions
k: Number of top regions to select
verbose: Whether to print progress
split: Dataset split to evaluate ('test', 'val', 'train')
save_results: Whether to save detailed results to files
output_dir: Directory to save results (if save_results=True)
Returns:
Dictionary containing evaluation metrics for both prediction methods
"""
print(f"[INFO] Evaluating ReCEP model from {model_path}")
print(f"[INFO] Settings:")
print(f" Radius: {radius}")
print(f" K: {k}")
print(f" Split: {split}\n")
antigens = load_data_split(split, verbose=verbose)
# Collect data for all proteins
all_true_labels = []
all_predicted_probs = []
all_voted_labels = []
all_predicted_binary = []
protein_results = []
for pdb_id, chain_id in tqdm(antigens, desc=f"Evaluating ReCEP on {split} set", disable=not verbose):
try:
antigen_chain = AntigenChain.from_pdb(chain_id=chain_id, id=pdb_id)
results = antigen_chain.evaluate(
model_path=model_path,
device_id=device_id,
radius=radius,
threshold=threshold,
k=k,
verbose=False,
encoder=encoder
)
# Get true epitope labels as binary array
true_epitopes = antigen_chain.get_epitope_residue_numbers()
true_binary = []
predicted_probs = []
voted_binary = []
predicted_binary = []
# Convert to aligned arrays based on residue numbers
for idx in range(len(antigen_chain.residue_index)):
residue_num = int(antigen_chain.residue_index[idx])
# True label
true_binary.append(1 if residue_num in true_epitopes else 0)
# Predicted probability
predicted_probs.append(results['predictions'].get(residue_num, 0))
# Voted prediction
voted_binary.append(1 if residue_num in results['voted_epitopes'] else 0)
# Probability-based prediction
predicted_binary.append(1 if residue_num in results['predicted_epitopes'] else 0)
# Store for overall evaluation
all_true_labels.extend(true_binary)
all_predicted_probs.extend(predicted_probs)
all_voted_labels.extend(voted_binary)
all_predicted_binary.extend(predicted_binary)
length = len(antigen_chain.sequence)
species = antigen_chain.get_species()
precision = results['predicted_precision']
recall = results['predicted_recall']
f1 = 2 * precision * recall / (precision + recall + 1e-10)
# Calculate PR-AUC using true_binary and predicted_probs
if len(set(true_binary)) > 1: # Check if there are both positive and negative samples
pr_precision, pr_recall, _ = precision_recall_curve(true_binary, predicted_probs)
pr_auc = auc(pr_recall, pr_precision)
else:
pr_auc = 0.0 # Default value when all labels are the same
# Store individual protein results
protein_results.append({
'pdb_id': pdb_id,
'chain_id': chain_id,
'length': length,
'species': species,
'predicted_precision': precision,
'predicted_recall': recall,
'predicted_f1': f1,
'pr_auc': pr_auc,
'voted_precision': results['voted_precision'],
'voted_recall': results['voted_recall'],
'num_residues': len(true_binary),
'num_true_epitopes': sum(true_binary),
'num_predicted_epitopes': sum(predicted_binary),
'num_voted_epitopes': sum(voted_binary),
'true_epitopes': true_binary,
'predicted_probabilities': predicted_probs
})
except Exception as e:
if verbose:
print(f"[WARNING] Failed to evaluate {pdb_id}_{chain_id}: {str(e)}")
continue
# Convert to numpy arrays
all_true_labels = np.array(all_true_labels)
all_predicted_probs = np.array(all_predicted_probs)
all_voted_labels = np.array(all_voted_labels)
all_predicted_binary = np.array(all_predicted_binary)
# Calculate metrics for probability-based predictions (includes both probability and binary metrics)
prob_metrics = calculate_node_metrics(all_predicted_probs, all_true_labels, find_threshold=True, include_curves=True)
# Calculate metrics for voting-based predictions (binary only)
vote_metrics = calculate_node_metrics(all_voted_labels.astype(float), all_true_labels, find_threshold=False)
# Calculate metrics for probability-based binary predictions using original threshold
pred_metrics = calculate_node_metrics(all_predicted_binary.astype(float), all_true_labels, find_threshold=False)
# Additional statistics for comprehensive evaluation
prediction_stats = {
'prob_based': {
'total_predicted_positive': int(np.sum(all_predicted_binary)),
'prediction_rate': float(np.mean(all_predicted_binary))
},
'vote_based': {
'total_predicted_positive': int(np.sum(all_voted_labels)),
'prediction_rate': float(np.mean(all_voted_labels))
}
}
# Overall statistics
overall_stats = {
'num_proteins': len(protein_results),
'total_residues': len(all_true_labels),
'total_true_epitopes': int(np.sum(all_true_labels)),
'epitope_ratio': float(np.mean(all_true_labels)),
'avg_protein_size': np.mean([p['num_residues'] for p in protein_results]),
'avg_epitopes_per_protein': np.mean([p['num_true_epitopes'] for p in protein_results]),
'prediction_stats': prediction_stats
}
if verbose:
print_evaluation_results(prob_metrics, vote_metrics, pred_metrics, overall_stats, threshold)
# Prepare results dictionary
results = {
'probability_metrics': prob_metrics,
'voted_metrics': vote_metrics,
'predicted_metrics': pred_metrics,
'overall_stats': overall_stats,
'protein_results': protein_results,
'threshold': threshold
}
if save_results:
if output_dir is None:
# Handle both string and Path objects
from pathlib import Path
model_path_obj = Path(model_path)
timestamp = model_path_obj.parent.name
model_name = model_path_obj.name.split("_")[1]
output_dir = BASE_DIR / "results" / "ReCEP" / timestamp
save_evaluation_results(results, output_dir, model_name)
return results
def print_evaluation_results(prob_metrics, vote_metrics, pred_metrics, overall_stats, threshold):
"""Print formatted evaluation results for both prediction modes."""
print(f"\n{'='*80}")
print(f"ReCEP MODEL EVALUATION RESULTS")
print(f"{'='*80}")
print(f"\nOverall Statistics:")
print(f" Number of proteins: {overall_stats['num_proteins']}")
print(f" Total residues: {overall_stats['total_residues']:,}")
print(f" Total true epitopes: {overall_stats['total_true_epitopes']:,}")
print(f" Epitope ratio: {overall_stats['epitope_ratio']:.3f}")
print(f" Average protein size: {overall_stats['avg_protein_size']:.1f}")
print(f" Average epitopes per protein: {overall_stats['avg_epitopes_per_protein']:.1f}")
print(f"\n{'-'*40}")
print(f"PROBABILITY-BASED PREDICTIONS")
print(f"{'-'*40}")
print(f"Threshold: {prob_metrics['best_threshold']}")
print(f"\nProbability Metrics:")
print(f" AUPRC: {prob_metrics['auprc']:.4f}")
print(f" AUROC: {prob_metrics['auroc']:.4f}")
print(f"\nBinary Classification Metrics:")
print(f" Accuracy: {prob_metrics['accuracy']:.4f}")
print(f" Precision: {prob_metrics['precision']:.4f}")
print(f" Recall: {prob_metrics['recall']:.4f}")
print(f" F1-Score: {prob_metrics['f1']:.4f}")
print(f" MCC: {prob_metrics['mcc']:.4f}")
print(f"\nConfusion Matrix:")
print(f" True Pos: {prob_metrics['true_positives']:>6} | False Pos: {prob_metrics['false_positives']:>6}")
print(f" False Neg: {prob_metrics['false_negatives']:>6} | True Neg: {prob_metrics['true_negatives']:>6}")
print(f"\n{'-'*40}")
print(f"VOTING-BASED PREDICTIONS")
print(f"{'-'*40}")
print(f"Binary Classification Metrics:")
print(f" Accuracy: {vote_metrics['accuracy']:.4f}")
print(f" Precision: {vote_metrics['precision']:.4f}")
print(f" Recall: {vote_metrics['recall']:.4f}")
print(f" F1-Score: {vote_metrics['f1']:.4f}")
print(f" MCC: {vote_metrics['mcc']:.4f}")
print(f"\nConfusion Matrix:")
print(f" True Pos: {vote_metrics['true_positives']:>6} | False Pos: {vote_metrics['false_positives']:>6}")
print(f" False Neg: {vote_metrics['false_negatives']:>6} | True Neg: {vote_metrics['true_negatives']:>6}")
print(f"\n{'-'*40}")
print(f"COMPARISON SUMMARY")
print(f"{'-'*40}")
print(f"{'Metric':<12} {'Probability':<12} {'Voting':<12} {'Difference':<12}")
print(f"{'-'*48}")
print(f"{'Accuracy':<12} {prob_metrics['accuracy']:<12.4f} {vote_metrics['accuracy']:<12.4f} {prob_metrics['accuracy']-vote_metrics['accuracy']:<12.4f}")
print(f"{'Precision':<12} {prob_metrics['precision']:<12.4f} {vote_metrics['precision']:<12.4f} {prob_metrics['precision']-vote_metrics['precision']:<12.4f}")
print(f"{'Recall':<12} {prob_metrics['recall']:<12.4f} {vote_metrics['recall']:<12.4f} {prob_metrics['recall']-vote_metrics['recall']:<12.4f}")
print(f"{'F1-Score':<12} {prob_metrics['f1']:<12.4f} {vote_metrics['f1']:<12.4f} {prob_metrics['f1']-vote_metrics['f1']:<12.4f}")
print(f"{'MCC':<12} {prob_metrics['mcc']:<12.4f} {vote_metrics['mcc']:<12.4f} {prob_metrics['mcc']-vote_metrics['mcc']:<12.4f}")
print(f"\n{'='*80}")
def save_evaluation_results(results, output_dir=None, prefix="evaluation"):
"""
Save detailed evaluation results to files for further analysis.
Args:
results: Dictionary containing all evaluation results
output_dir: Directory to save results
prefix: Prefix for output files
"""
import os
import json
if output_dir is None:
output_dir = BASE_DIR / "results" / "evaluation"
# Create output directory if it doesn't exist
os.makedirs(output_dir, exist_ok=True)
# Save overall results as JSON
results_to_save = {
'probability_metrics': results['probability_metrics'],
'voted_metrics': results['voted_metrics'],
'predicted_metrics': results['predicted_metrics'],
'overall_stats': results['overall_stats'],
'threshold': results['threshold']
}
# Remove non-serializable items (curves)
if 'pr_curve' in results_to_save['probability_metrics']:
if results_to_save['probability_metrics']['pr_curve'] is not None:
# Convert numpy arrays to lists for JSON serialization
results_to_save['probability_metrics']['pr_curve'] = {
'precision': results_to_save['probability_metrics']['pr_curve']['precision'].tolist(),
'recall': results_to_save['probability_metrics']['pr_curve']['recall'].tolist()
}
if 'roc_curve' in results_to_save['probability_metrics']:
if results_to_save['probability_metrics']['roc_curve'] is not None:
results_to_save['probability_metrics']['roc_curve'] = {
'fpr': results_to_save['probability_metrics']['roc_curve']['fpr'].tolist(),
'tpr': results_to_save['probability_metrics']['roc_curve']['tpr'].tolist()
}
# Save main results
with open(os.path.join(output_dir, f"{prefix}_results.json"), 'w') as f:
json.dump(results_to_save, f, indent=2)
# Save protein-level results as CSV
if 'protein_results' in results:
df = pd.DataFrame(results['protein_results'])
df.to_csv(os.path.join(output_dir, f"{prefix}_protein_results.csv"), index=False)
print(f"\nResults saved to {output_dir}/")
print(f" - {prefix}_results.json: Overall metrics")
print(f" - {prefix}_protein_results.csv: Per-protein results")
|