""" Simplified graph utilities for SphereGraphDataset. Contains only the essential functions needed without external dependencies. """ import numpy as np from pathlib import Path from typing import List, Optional, Tuple import torch from torch_geometric.data import Data from torch_geometric.nn import radius_graph def parse_binding_site_txt(txt_path: Path) -> Tuple[List[str], List[str], List[torch.Tensor]]: """ Parse a fasta-like txt file with 3 lines per entry: >id, sequence, label Returns: (rna_ids, rna_seqs, labels) """ rna_ids, rna_seqs, labels = [], [], [] with open(txt_path, 'r') as f: lines = [line.strip() for line in f if line.strip()] for i in range(0, len(lines), 3): rna_id = lines[i][1:] if lines[i].startswith('>') else lines[i] seq = lines[i+1] label_str = lines[i+2] label = torch.tensor([int(x) for x in label_str], dtype=torch.float32) rna_ids.append(rna_id) rna_seqs.append(seq) labels.append(label) return rna_ids, rna_seqs, labels def create_graph_data_full( embeddings: np.ndarray, backbone_atoms: np.ndarray, rsa_values: np.ndarray, epitope_indices: List[int], pdb_id: str, chain_id: str, num_rbf: int = 16, num_posenc: int = 16, radius: float = 18.0, verbose: bool = True ) -> Optional[Data]: """ Create a PyTorch Geometric Data object for a full protein graph. Args: embeddings: Full protein embeddings [seq_len, embed_dim] backbone_atoms: Full protein backbone atoms [seq_len, 3, 3] (N, CA, C) rsa_values: Full protein RSA values [seq_len] epitope_indices: List of epitope residue indices pdb_id: PDB ID chain_id: Chain ID num_rbf: Number of RBF features num_posenc: Number of positional encoding features radius: Distance threshold for edge creation (default: 18.0 Å) verbose: Whether to print debug information Returns: PyTorch Geometric Data object or None if creation fails """ try: # Validate input dimensions seq_len = len(embeddings) if len(backbone_atoms) != seq_len or len(rsa_values) != seq_len: if verbose: print(f"[WARNING] Dimension mismatch for {pdb_id}_{chain_id}: " f"embeddings={len(embeddings)}, backbone={len(backbone_atoms)}, " f"rsa={len(rsa_values)}") return None if seq_len == 0: if verbose: print(f"[WARNING] Empty protein {pdb_id}_{chain_id}") return None # Create node labels (binary epitope classification) node_labels = np.zeros(seq_len, dtype=np.float32) if epitope_indices: # Filter epitope_indices to ensure they are within bounds valid_epitope_indices = [idx for idx in epitope_indices if 0 <= idx < seq_len] if valid_epitope_indices: node_labels[valid_epitope_indices] = 1.0 if verbose and len(valid_epitope_indices) != len(epitope_indices): print(f"[WARNING] Some epitope indices out of bounds for {pdb_id}_{chain_id}: " f"filtered {len(epitope_indices)} -> {len(valid_epitope_indices)}") # Extract CA coordinates for distance calculation ca_coords = backbone_atoms[:, 1, :] # CA is the second atom [seq_len, 3] # Validate CA coordinates if ca_coords.shape[0] == 0: if verbose: print(f"[WARNING] Empty CA coordinates for {pdb_id}_{chain_id}") return None # Check for NaN or infinite values if np.any(np.isnan(ca_coords)) or np.any(np.isinf(ca_coords)): if verbose: print(f"[WARNING] Invalid CA coordinates (NaN/Inf) for {pdb_id}_{chain_id}") return None # Create edges based on distance threshold using radius_graph ca_coords_tensor = torch.tensor(ca_coords, dtype=torch.float32) # Additional safety check for tensor if ca_coords_tensor.numel() == 0: if verbose: print(f"[WARNING] Empty CA coordinates tensor for {pdb_id}_{chain_id}") return None edge_index = radius_graph(ca_coords_tensor, r=radius, loop=False, max_num_neighbors=32) if edge_index.shape[1] == 0: if verbose: print(f"[WARNING] No edges found for {pdb_id}_{chain_id} with radius {radius}") # Create a minimal graph with self-loops to avoid empty graph edge_index = torch.stack([torch.arange(seq_len), torch.arange(seq_len)], dim=0) # Compute edge features edge_features = compute_edge_features(ca_coords, edge_index, num_rbf=num_rbf, num_posenc=num_posenc) # Convert to tensors x = torch.tensor(embeddings, dtype=torch.float32) # [seq_len, embed_dim] pos = torch.tensor(backbone_atoms, dtype=torch.float32) # [seq_len, 3, 3] rsa = torch.tensor(rsa_values, dtype=torch.float32) # [seq_len] # Node-level labels y_node = torch.tensor(node_labels, dtype=torch.float32) # [seq_len] # Additional protein-level statistics num_epitopes = int(node_labels.sum()) epitope_ratio = num_epitopes / seq_len if seq_len > 0 else 0.0 # Create Data object data = Data( x=x, # Node embeddings [seq_len, embed_dim] pos=pos, # Backbone coordinates [seq_len, 3, 3] rsa=rsa, # RSA values [seq_len] edge_index=edge_index, # Edge connectivity [2, n_edges] edge_attr=edge_features, # Edge features [n_edges, edge_dim] y_node=y_node, # Node-level labels [seq_len] epitope_indices=epitope_indices, # Original epitope indices pdb_id=pdb_id, # PDB ID chain_id=chain_id, # Chain ID num_nodes=seq_len, # Number of nodes (residues) num_epitopes=num_epitopes, # Number of epitope residues epitope_ratio=epitope_ratio, # Ratio of epitope residues radius=radius # Distance threshold used for edges ) if verbose: print(f"[INFO] Created full protein graph for {pdb_id}_{chain_id}: " f"{seq_len} nodes, {edge_index.shape[1]} edges, {num_epitopes} epitopes") return data except Exception as e: if verbose: print(f"[ERROR] Failed to create full protein graph for {pdb_id}_{chain_id}: {str(e)}") return None def create_graph_data( center_idx: int, covered_indices: List[int], covered_epitope_indices: List[int], embeddings: np.ndarray, backbone_atoms: np.ndarray, rsa_values: np.ndarray, epitope_indices: List[int], recall: float, precision: float, pdb_id: str, chain_id: str, embeddings2: np.ndarray = None, num_rbf: int = 16, num_posenc: int = 16, verbose: bool = True ) -> Optional[Data]: """ Create a PyTorch Geometric Data object for a spherical region. Args: center_idx: Index of the center residue covered_indices: List of residue indices in the region covered_epitope_indices: List of epitope residue indices in the region embeddings: Full protein embeddings backbone_atoms: Full protein backbone atoms [seq_len, 3, 3] rsa_values: Full protein RSA values epitope_indices: List of all epitope indices in the protein (if available) recall: Region recall value (if available) precision: Region precision value (if available) pdb_id: PDB ID chain_id: Chain ID Returns: PyTorch Geometric Data object or None if creation fails """ try: # Validate indices first if not covered_indices: if verbose: print(f"[WARNING] Empty covered_indices for center {center_idx}") return None # Check if indices are within bounds max_idx = max(covered_indices) if max_idx >= len(embeddings) or max_idx >= len(backbone_atoms) or max_idx >= len(rsa_values): if verbose: print(f"[WARNING] Index out of bounds: max_idx={max_idx}, " f"embeddings_len={len(embeddings)}, backbone_len={len(backbone_atoms)}, " f"rsa_len={len(rsa_values)}") return None # Extract node features for covered residues node_embeddings = embeddings[covered_indices] # [n_nodes, embed_dim] node_backbone = backbone_atoms[covered_indices] # [n_nodes, 3, 3] node_rsa = rsa_values[covered_indices] # [n_nodes] if embeddings2 is not None: node_embeddings2 = embeddings2[covered_indices] # [n_nodes, embed_dim] else: node_embeddings2 = None # Create node labels (binary epitope classification) node_labels = np.zeros(len(covered_indices), dtype=np.float32) # Use the epitope_indices from the loaded data if available epitope_mask = np.isin(covered_indices, epitope_indices) node_labels[epitope_mask] = 1.0 # Create fully connected edge index (no self-loops) n_nodes = len(covered_indices) edge_index = get_edges(n_nodes) edge_index = torch.tensor(edge_index, dtype=torch.long) # Compute edge features using CA coordinates ca_coords = node_backbone[:, 1, :] # Extract CA coordinates [n_nodes, 3] edge_features = compute_edge_features(ca_coords, edge_index, num_rbf=num_rbf, num_posenc=num_posenc) # Convert to tensors x = torch.tensor(node_embeddings, dtype=torch.float32) pos = torch.tensor(node_backbone, dtype=torch.float32) # [n_nodes, 3, 3] rsa = torch.tensor(node_rsa, dtype=torch.float32) # Graph-level label (recall) y_graph = torch.tensor([recall], dtype=torch.float32) # Node-level labels y_node = torch.tensor(node_labels, dtype=torch.float32) # Create Data object data = Data( x=x, # Node embeddings [n_nodes, embed_dim] pos=pos, # Backbone coordinates [n_nodes, 3, 3] rsa=rsa, # RSA values [n_nodes] edge_index=edge_index, # Edge connectivity [2, n_edges] edge_attr=edge_features, # Edge features [n_edges, edge_dim] y=y_graph, # Graph-level label (recall) y_node=y_node, # Node-level labels [n_nodes] center_idx=center_idx, # Center residue index covered_indices=covered_indices, # All covered residue indices precision=precision, # Region precision pdb_id=pdb_id, # PDB ID chain_id=chain_id, # Chain ID num_nodes=n_nodes, # Number of nodes embeddings2=node_embeddings2, # other embeddings [n_nodes, embed_dim] - region-specific ) return data except Exception as e: if verbose: print(f"Error creating graph data for {pdb_id}_{chain_id} center {center_idx}: {str(e)}") return None def compute_edge_features(coords: np.ndarray, edge_index: torch.Tensor, num_rbf: int = 16, num_posenc: int = 16) -> torch.Tensor: """ Compute edge features including RBF and positional encoding. Args: coords: Node coordinates [n_nodes, 3] edge_index: Edge connectivity [2, n_edges] num_rbf: Number of RBF features num_posenc: Number of positional encoding features Returns: Edge features [n_edges, edge_dim] """ # Convert to torch tensors coords_tensor = torch.tensor(coords, dtype=torch.float32) # Compute edge vectors and distances edge_vectors = coords_tensor[edge_index[0]] - coords_tensor[edge_index[1]] # [n_edges, 3] edge_distances = torch.norm(edge_vectors, dim=-1) # [n_edges] # RBF features edge_rbf = rbf(edge_distances, D_count=num_rbf) # [n_edges, num_rbf] # Positional encoding edge_posenc = get_posenc(edge_index, num_posenc=num_posenc) # [n_edges, num_posenc] # Concatenate edge features edge_features = torch.cat([edge_rbf, edge_posenc], dim=-1) # [n_edges, num_rbf + num_posenc] return edge_features def get_edges(n_nodes): """Generate fully connected edge indices (no self-loops)""" rows, cols = [], [] for i in range(n_nodes): for j in range(n_nodes): if i != j: rows.append(i) cols.append(j) return [rows, cols] def get_posenc(edge_index, num_posenc=16): """ Generate positional encoding for edges. From https://github.com/jingraham/neurips19-graph-protein-design """ d = edge_index[0] - edge_index[1] frequency = torch.exp( torch.arange(0, num_posenc, 2, dtype=torch.float32, device=d.device) * -(np.log(10000.0) / num_posenc) ) angles = d.unsqueeze(-1) * frequency E = torch.cat((torch.cos(angles), torch.sin(angles)), -1) return E def rbf(D, D_min=0., D_max=20., D_count=16): """ Radial Basis Function (RBF) encoding for distances. From https://github.com/jingraham/neurips19-graph-protein-design Returns an RBF embedding of `torch.Tensor` `D` along a new axis=-1. That is, if `D` has shape [...dims], then the returned tensor will have shape [...dims, D_count]. """ D_mu = torch.linspace(D_min, D_max, D_count, device=D.device) D_mu = D_mu.view([1, -1]) D_sigma = (D_max - D_min) / D_count D_expand = torch.unsqueeze(D, -1) RBF = torch.exp(-((D_expand - D_mu) / D_sigma) ** 2) return RBF